Hermite Convolutional Networks

被引:2
作者
Ledesma, Leonardo [1 ,2 ]
Olveres, Jimena [2 ]
Escalante-Ramirez, Boris [2 ]
机构
[1] Univ Nacl Autonoma Mexico, Posgrado Ciencia & Ingn Computac, Mexico City, DF, Mexico
[2] Univ Nacl Autonoma Mexico, Fac Ingn, Mexico City, DF, Mexico
来源
PROGRESS IN PATTERN RECOGNITION, IMAGE ANALYSIS, COMPUTER VISION, AND APPLICATIONS (CIARP 2019) | 2019年 / 11896卷
关键词
Hermite transform; Convolutional neural networks; Kernel modulation; Orientation; Scale; Feature map;
D O I
10.1007/978-3-030-33904-3_37
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Convolutional Neuronal Networks (CNNs) have become a fundamental methodology in Computer Vision, specifically in image classification and object detection tasks. Artificial Intelligence has focused much of its efforts in the different research areas of CNN. Recent research has demonstrated that providing CNNs with a priori knowledge helps them improve their performance while reduce the number of parameters and computing time. On the other hand, the Hermite transform is a useful mathematical tool that extracts relevant image features useful for classification task. This paper presents a novel approach to combine CNNs with the Hermite transform, namely, Hermite Convolutional Networks (HCN). Furthermore, the proposed HCNs keep the advantages of CNN while leading to a more compact deep learning model without losing a high feature representation capacity.
引用
收藏
页码:398 / 407
页数:10
相关论文
共 16 条
  • [1] Invariant Scattering Convolution Networks
    Bruna, Joan
    Mallat, Stephane
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2013, 35 (08) : 1872 - 1886
  • [2] Calderon A., 2003, INT C COMPUT INTELL, V1, P1
  • [3] Ciresan D, 2012, PROC CVPR IEEE, P3642, DOI 10.1109/CVPR.2012.6248110
  • [4] Gabor Feature based Convolutional Neural Network for Object Recognition in Natural Scene
    Hu Yao
    Hu Dan
    Li Chuyi
    Yu Weiyu
    [J]. 2016 3RD INTERNATIONAL CONFERENCE ON INFORMATION SCIENCE AND CONTROL ENGINEERING (ICISCE), 2016, : 386 - 390
  • [5] ImageNet Classification with Deep Convolutional Neural Networks
    Krizhevsky, Alex
    Sutskever, Ilya
    Hinton, Geoffrey E.
    [J]. COMMUNICATIONS OF THE ACM, 2017, 60 (06) : 84 - 90
  • [6] Gradient-based learning applied to document recognition
    Lecun, Y
    Bottou, L
    Bengio, Y
    Haffner, P
    [J]. PROCEEDINGS OF THE IEEE, 1998, 86 (11) : 2278 - 2324
  • [7] LeCun Y, 1998, MNIST handwritten digit database
  • [8] Gabor Convolutional Networks
    Luan, Shangzhen
    Chen, Chen
    Zhang, Baochang
    Han, Jungong
    Liu, Jianzhuang
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2018, 27 (09) : 4357 - 4366
  • [9] THE HERMITE TRANSFORM APPLICATIONS
    MARTENS, JB
    [J]. IEEE TRANSACTIONS ON ACOUSTICS SPEECH AND SIGNAL PROCESSING, 1990, 38 (09): : 1607 - 1618
  • [10] THE HERMITE TRANSFORM-THEORY
    MARTENS, JB
    [J]. IEEE TRANSACTIONS ON ACOUSTICS SPEECH AND SIGNAL PROCESSING, 1990, 38 (09): : 1595 - 1606