ADAPTIVE TESTING ON A REGRESSION FUNCTION AT A POINT

被引:13
作者
Armstrong, Timothy [1 ]
机构
[1] Yale Univ, Dept Econ, New Haven, CT 06511 USA
关键词
Adaptive testing; regression discontinuity; identification at infinity; ASYMPTOTIC EQUIVALENCE; CONFIDENCE; IDENTIFICATION;
D O I
10.1214/15-AOS1342
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider the problem of inference on a regression function at a point when the entire function satisfies a sign or shape restriction under the null. We propose a test that achieves the optimal minimax rate adaptively over a range of Holder classes, up to a log log n term, which we show to be necessary for adaptation. We apply the results to adaptive one-sided tests for the regression discontinuity parameter under a monotonicity restriction, the value of a monotone regression function at the boundary and the proportion of true null hypotheses in a multiple testing problem.
引用
收藏
页码:2086 / 2101
页数:16
相关论文
共 25 条
[1]   Semiparametric estimation of the intercept of a sample selection model [J].
Andrews, DWK ;
Schafgans, MMA .
REVIEW OF ECONOMIC STUDIES, 1998, 65 (03) :497-517
[2]  
Brown LD, 1996, ANN STAT, V24, P2384
[3]   Estimation and confidence sets for sparse normal mixtures [J].
Cai, T. Tony ;
Jin, Jiashun ;
Low, Mark G. .
ANNALS OF STATISTICS, 2007, 35 (06) :2421-2449
[4]   ADAPTIVE CONFIDENCE INTERVALS FOR REGRESSION FUNCTIONS UNDER SHAPE CONSTRAINTS [J].
Cai, T. Tony ;
Low, Mark G. ;
Xia, Yin .
ANNALS OF STATISTICS, 2013, 41 (02) :722-750
[5]   An adaptation theory for nonparametric confidence intervals [J].
Cai, TT ;
Low, MG .
ANNALS OF STATISTICS, 2004, 32 (05) :1805-1840
[6]   ASYMPTOTIC EFFICIENCY IN SEMIPARAMETRIC MODELS WITH CENSORING [J].
CHAMBERLAIN, G .
JOURNAL OF ECONOMETRICS, 1986, 32 (02) :189-218
[7]   Higher criticism for detecting sparse heterogeneous mixtures [J].
Donoho, D ;
Jin, JS .
ANNALS OF STATISTICS, 2004, 32 (03) :962-994
[8]   Optimal confidence bands for shaperestricted curves [J].
Dümbgen, L .
BERNOULLI, 2003, 9 (03) :423-449
[9]   Multiscale testing of qualitative hypotheses [J].
Dümbgen, L ;
Spokoiny, VG .
ANNALS OF STATISTICS, 2001, 29 (01) :124-152
[10]  
Efron B., 2010, Large-Scale Inference: Empirical Bayes Methods for Estimation, Testing, and Prediction, DOI 10.1017/CBO9780511761362