High Resolution Crystal Structure of Human β-Glucuronidase Reveals Structural Basis of Lysosome Targeting

被引:52
作者
Hassan, Md Imtaiyaz [1 ,2 ]
Waheed, Abdul [1 ]
Grubb, Jeffery H. [1 ]
Klei, Herbert E. [3 ]
Korolev, Sergey [1 ]
Sly, William S. [1 ]
机构
[1] St Louis Univ, Sch Med, Edward A Doisy Dept Biochem & Mol Biol, St Louis, MO 63104 USA
[2] Jamia Millia Islamia, Ctr Interdisciplinary Res Basic Sci, New Delhi 110025, India
[3] Bristol Myers Squibb Co, Res & Dev, Princeton, NJ USA
来源
PLOS ONE | 2013年 / 8卷 / 11期
关键词
UDP-N-ACETYLGLUCOSAMINE; MANNOSE PHOSPHORYLATION; 3-DIMENSIONAL STRUCTURE; ENZYME RECOGNITION; MOLECULAR-BASIS; BINDING-SITES; DNA-SEQUENCE; CATHEPSIN-D; PROTEIN; IDENTIFICATION;
D O I
10.1371/journal.pone.0079687
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Human beta-glucuronidase (GUS) cleaves beta-D-glucuronic acid residues from the non-reducing termini of glycosaminoglycan and its deficiency leads to mucopolysaccharidosis type VII (MPSVII). Here we report a high resolution crystal structure of human GUS at 1.7 angstrom resolution and present an extensive analysis of the structural features, unifying recent findings in the field of lysosome targeting and glycosyl hydrolases. The structure revealed several new details including a new glycan chain at Asn272, in addition to that previously observed at Asn173, and coordination of the glycan chain at Asn173 with Lys197 of the lysosomal targeting motif which is essential for phosphotransferase recognition. Analysis of the high resolution structure not only provided new insights into the structural basis for lysosomal targeting but showed significant differences between human GUS, which is medically important in its own right, and E. coli GUS, which can be selectively inhibited in the human gut to prevent prodrug activation and is also widely used as a reporter gene by plant biologists. Despite these differences, both human and E. coli GUS share a high structure homology in all three domains with most of the glycosyl hydrolases, suggesting that they all evolved from a common ancestral gene.
引用
收藏
页数:10
相关论文
共 61 条
[1]   HUMAN BETA-GLUCURONIDASE - INVIVO CLEARANCE AND INVITRO UPTAKE BY A GLYCOPROTEIN RECOGNITION SYSTEM ON RETICULOENDOTHELIAL CELLS [J].
ACHORD, DT ;
BROT, FE ;
BELL, CE ;
SLY, WS .
CELL, 1978, 15 (01) :269-278
[2]   CARBOHYDRATE-SPECIFIC RECEPTORS OF THE LIVER [J].
ASHWELL, G ;
HARFORD, J .
ANNUAL REVIEW OF BIOCHEMISTRY, 1982, 51 :531-554
[3]   THE CCP4 SUITE - PROGRAMS FOR PROTEIN CRYSTALLOGRAPHY [J].
BAILEY, S .
ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY, 1994, 50 :760-763
[4]   CRYSTAL-STRUCTURES OF NATIVE AND INHIBITED FORMS OF HUMAN CATHEPSIN-D - IMPLICATIONS FOR LYSOSOMAL TARGETING AND DRUG DESIGN [J].
BALDWIN, ET ;
BHAT, TN ;
GULNIK, S ;
HOSUR, MV ;
SOWDER, RC ;
CACHAU, RE ;
COLLINS, J ;
SILVA, AM ;
ERICKSON, JW .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1993, 90 (14) :6796-6800
[5]  
BARANSKI TJ, 1992, J BIOL CHEM, V267, P23342
[6]   GENERATION OF A LYSOSOMAL-ENZYME TARGETING SIGNAL IN THE SECRETORY PROTEIN PEPSINOGEN [J].
BARANSKI, TJ ;
FAUST, PL ;
KORNFELD, S .
CELL, 1990, 63 (02) :281-291
[7]   The complete genome sequence of Escherichia coli K-12 [J].
Blattner, FR ;
Plunkett, G ;
Bloch, CA ;
Perna, NT ;
Burland, V ;
Riley, M ;
ColladoVides, J ;
Glasner, JD ;
Rode, CK ;
Mayhew, GF ;
Gregor, J ;
Davis, NW ;
Kirkpatrick, HA ;
Goeden, MA ;
Rose, DJ ;
Mau, B ;
Shao, Y .
SCIENCE, 1997, 277 (5331) :1453-+
[8]   Structure of a human lysosomal sulfatase [J].
Bond, CS ;
Clements, PR ;
Ashby, SJ ;
Collyer, CA ;
Harrop, SJ ;
Hopwood, JJ ;
Guss, JM .
STRUCTURE, 1997, 5 (02) :277-289
[9]   Identification of N-Glycans Displaying Mannose-6-Phosphate and their Site of Attachment on Therapeutic Enzymes for Lysosomal Storage Disorder Treatment [J].
Bones, Jonathan ;
Mittermayr, Stefan ;
McLoughlin, Niaobh ;
Hilliard, Mark ;
Wynne, Kieran ;
Johnson, Gibbes R. ;
Grubb, Jeffrey H. ;
Sly, William S. ;
Rudd, Pauline M. .
ANALYTICAL CHEMISTRY, 2011, 83 (13) :5344-5352
[10]   Crystallography & NMR system:: A new software suite for macromolecular structure determination [J].
Brunger, AT ;
Adams, PD ;
Clore, GM ;
DeLano, WL ;
Gros, P ;
Grosse-Kunstleve, RW ;
Jiang, JS ;
Kuszewski, J ;
Nilges, M ;
Pannu, NS ;
Read, RJ ;
Rice, LM ;
Simonson, T ;
Warren, GL .
ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY, 1998, 54 :905-921