Twisted zeta-functions and abelian Stark Conjectures

被引:5
作者
Solomon, D [1 ]
机构
[1] Kings Coll London, London WC2R 2LS, England
基金
英国工程与自然科学研究理事会;
关键词
D O I
10.1006/jnth.2001.2724
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We present a new version "at s = 1" of Rubin's refined, higher order Stark conjecture at s = 0 for an abelian extension of number fields (K. Rubin, 1996, Ann. Inst. Fourier 46, No. 1, 33-62). The key idea is to introduce a formalism of "twisted zeta-functions" to replace the L-functions underlying Rubin's conjecture. This achieves certain simplifications, notably eliminating Gauss sums in a natural way from our version at s = 1. It also facilitates some further developments, including an important motivation of the present paper: the formulation of an analogous p-adic conjecture to be presented in a sequel. (C) 2002 Elsevier Science (USA).
引用
收藏
页码:10 / 48
页数:39
相关论文
共 10 条
[1]  
[Anonymous], 1996, Graduate Texts in Mathematics
[2]   NEGATIVE INTEGRAL VALUES OF ZETA-FUNCTIONS AND P-ADIC ZETA-FUNCTIONS [J].
CASSOUNOGUES, P .
INVENTIONES MATHEMATICAE, 1979, 51 (01) :29-59
[3]   On a refined Stark conjecture for function fields [J].
Popescu, CD .
COMPOSITIO MATHEMATICA, 1999, 116 (03) :321-367
[4]  
ROBLOT XF, VERIFYING P ADIC ABE
[5]   A stark conjecture ''over Z'' for abelian L-functions with multiple zeros [J].
Rubin, K .
ANNALES DE L INSTITUT FOURIER, 1996, 46 (01) :33-&
[6]  
SOLOMIN D, IN PRESS P ADIC ABEL
[7]   The Shintani cocycle -: II.: Partial ζ-functions, cohomologous cocycles and p-adic interpolation [J].
Solomon, D .
JOURNAL OF NUMBER THEORY, 1999, 75 (01) :53-108
[8]   L-FUNCTIONS AT S=1 .4. 1ST DERIVATIVES AT S=0 [J].
STARK, HM .
ADVANCES IN MATHEMATICS, 1980, 35 (03) :197-235
[9]  
Tate J., 1984, Lecture notes
[10]  
TATUZAWA T, 1960, NAGOYA MATH J, V16, P11