Fiber-based remote photoacoustic imaging utilizing a Mach Zehnder interferometer with optical amplification

被引:4
作者
Hochreiner, A. [1 ]
Bauer-Marschallinger, J. [1 ]
Burgholzer, P. [1 ]
Berer, T. [1 ]
机构
[1] Res Ctr Nondestruct Testing GmbH, RECENDT, Linz, Austria
来源
PHOTONS PLUS ULTRASOUND: IMAGING AND SENSING 2014 | 2014年 / 8943卷
基金
奥地利科学基金会;
关键词
photoacoustic imaging; remote imaging; ultrasound; optical amplifier; interferometry;
D O I
10.1117/12.2039019
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We present a remote photoacoustic imaging system without the need of a physical contact to the specimen. The setup is based on a Mach-Zehnder interferometer using optical wave guide technology as usually used in telecommunication industries, thus guaranteeing long life times and relatively low costs. A detection beam is transmitted through an optical fiber to a lens system which focuses the beam to the surface of a specimen. The back reflected light is than collected by the same lens system and coupled into the same optical fiber. As the collected light intensity is less than 0.1% of the transmitted intensity in forward direction an optical amplifier is used for amplifying the collected light. After amplification the light is brought to interference with a reference beam for demodulation of the ultrasound signals. The modulated light intensity is converted into electrical signals by a self-built balanced photo detector. We present non-contact photoacoustic imaging of a tissue-mimicking phantom and on chicken skin.
引用
收藏
页数:7
相关论文
共 11 条
[1]  
Bauer-Marschallinger J., 2013, P SOC PHOTO-OPT INS, V8581
[2]   Remote photoacoustic imaging on solid material using a two-wave mixing interferometer [J].
Berer, Thomas ;
Hochreiner, Armin ;
Zamiri, Saeid ;
Burgholzer, Peter .
OPTICS LETTERS, 2010, 35 (24) :4151-4153
[3]   3-DIMENSIONAL IMAGING USING A FREQUENCY-DOMAIN SYNTHETIC APERTURE FOCUSING TECHNIQUE [J].
BUSSE, LJ .
IEEE TRANSACTIONS ON ULTRASONICS FERROELECTRICS AND FREQUENCY CONTROL, 1992, 39 (02) :174-179
[4]   Optoacoustic imaging based on the interferometric measurement of surface displacement [J].
Carp, Stefan A. ;
Venugopalan, Vasan .
JOURNAL OF BIOMEDICAL OPTICS, 2007, 12 (06)
[5]   Non-contact photoacoustic imaging using a fiber based interferometer with optical amplification [J].
Hochreiner, Armin ;
Bauer-Marschallinger, Johannes ;
Burgholzer, Peter ;
Jakoby, Bernhard ;
Berer, Thomas .
BIOMEDICAL OPTICS EXPRESS, 2013, 4 (11) :2322-2331
[6]   Photoacoustic imaging using an adaptive interferometer with a photorefractive crystal [J].
Hochreiner, Armin ;
Berer, Thomas ;
Gruen, Hubert ;
Leitner, Michael ;
Burgholzer, Peter .
JOURNAL OF BIOPHOTONICS, 2012, 5 (07) :508-517
[7]   Current concepts and future perspectives on surgical optical imaging in cancer [J].
Ntziachristos, Vasilis ;
Yoo, Jung Sun ;
van Dam, Gooitzen M. .
JOURNAL OF BIOMEDICAL OPTICS, 2010, 15 (06)
[8]   Optoacoustic tomography interferometric detection using time-resolved of surface displacement [J].
Payne, BP ;
Venugopalan, V ;
Mikic, BB ;
Nishioka, NS .
JOURNAL OF BIOMEDICAL OPTICS, 2003, 8 (02) :273-280
[9]   Non-contact biomedical photoacoustic and ultrasound imaging [J].
Rousseau, Guy ;
Gauthier, Bruno ;
Blouin, Alain ;
Monchalin, Jean-Pierre .
JOURNAL OF BIOMEDICAL OPTICS, 2012, 17 (06)
[10]   Non-contact photoacoustic tomography and ultrasonography for tissue imaging [J].
Rousseau, Guy ;
Blouin, Alain ;
Monchalin, Jean-Pierre .
BIOMEDICAL OPTICS EXPRESS, 2012, 3 (01) :16-25