Quantitative trait loci for growth and body size in the nine-spined stickleback Pungitius pungitius L.

被引:26
作者
Laine, Veronika N. [1 ]
Shikano, Takahito [2 ]
Herczeg, Gabor [2 ,3 ]
Vilkki, Johanna [4 ]
Merila, Juha [2 ]
机构
[1] Univ Turku, Dept Biol, Div Genet & Physiol, Turku 20014, Finland
[2] Univ Helsinki, Dept Biosci, Ecol Genet Res Unit, FIN-00014 Helsinki, Finland
[3] Eotvos Lorand Univ, Dept Systemat Zool & Ecol, Behav Ecol Grp, H-1117 Budapest, Hungary
[4] MTT Agrifood Res Finland, Jokioinen, Finland
基金
芬兰科学院; 匈牙利科学研究基金会;
关键词
body size; growth; linkage map; QTL; quantitative trait loci; GENETIC-LINKAGE MAP; FUNCTIONALLY IMPORTANT GENES; DROSOPHILA-MELANOGASTER; POPULATION DIVERGENCE; PELVIC REDUCTION; FRESH-WATER; QTL; ARCHITECTURE; EVOLUTION; SELECTION;
D O I
10.1111/mec.12526
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Body size is an ecologically important trait shown to be genetically variable both within and among different animal populations as revealed by quantitative genetic studies. However, few studies have looked into underlying genetic architecture of body size variability in the wild using genetic mapping methods. With the aid of quantitative trait loci (QTL) analyses based on 226 microsatellite markers, we mapped body size and growth rate traits in the nine-spined stickleback (Pungitius pungitius) using an F-2-intercross (n=283 offspring) between size-divergent populations. In total, 17 QTL locations were detected. The proportion of phenotypic variation explained by individual body size-related QTL ranged from 3% to 12% and those related to growth parameters and increments from 3% to 10%. Several of the detected QTL affected either early or late growth. These results provide a solid starting point for more in depth investigations of structure and function of genomic regions involved in determination of body size in this popular model of ecological and evolutionary research.
引用
收藏
页码:5861 / 5876
页数:16
相关论文
共 99 条
[1]   Body size divergence in nine-spined sticklebacks: disentangling additive genetic and maternal effects [J].
Ab Ghani, Nurul Izza ;
Herczeg, Gabor ;
Merila, Juha .
BIOLOGICAL JOURNAL OF THE LINNEAN SOCIETY, 2012, 107 (03) :521-528
[2]   Shy trout grow faster: exploring links between personality and fitness-related traits in the wild [J].
Adriaenssens, Bart ;
Johnsson, Jorgen I. .
BEHAVIORAL ECOLOGY, 2011, 22 (01) :135-143
[3]   Breeding new strains of tilapia: development of an artificial center of origin and linkage map based on AFLP and microsatellite loci [J].
Agresti, JJ ;
Seki, S ;
Cnaani, A ;
Poompuang, S ;
Hallerman, EM ;
Umiel, N ;
Hulata, G ;
Gall, GAE ;
May, B .
AQUACULTURE, 2000, 185 (1-2) :43-56
[4]   Optimal growth strategies under divergent predation pressure [J].
Aikio, S. ;
Herczeg, G. ;
Kuparinen, A. ;
Merila, J. .
JOURNAL OF FISH BIOLOGY, 2013, 82 (01) :318-331
[5]   The genetics of adaptive shape shift in stickleback: Pleiotropy and effect size [J].
Albert, Arianne Y. K. ;
Sawaya, Sterling ;
Vines, Timothy H. ;
Knecht, Anne K. ;
Miller, Craig T. ;
Summers, Brian R. ;
Balabhadra, Sarita ;
Kingsley, David M. ;
Schluter, Dolph .
EVOLUTION, 2008, 62 (01) :76-85
[6]   Phylogeography of ninespine sticklebacks (Pungitius pungitius) in North America: glacial refugia and the origins of adaptive traits [J].
Aldenhoven, Jaclyn T. ;
Miller, Matthew A. ;
Corneli, Patrice Showers ;
Shapiro, Michael D. .
MOLECULAR ECOLOGY, 2010, 19 (18) :4061-4076
[7]   Genomic mapping of direct and correlated responses to long-term selection for rapid growth rate in mice [J].
Allan, MF ;
Eisen, EJ ;
Pomp, D .
GENETICS, 2005, 170 (04) :1863-1877
[8]   Domestic-animal genomics: deciphering the genetics of complex traits [J].
Andersson, L ;
Georges, M .
NATURE REVIEWS GENETICS, 2004, 5 (03) :202-212
[9]   Genetic dissection of phenotypic diversity in farm animals [J].
Andersson, L .
NATURE REVIEWS GENETICS, 2001, 2 (02) :130-138
[10]  
[Anonymous], 1998, Genetics and Analysis of Quantitative Traits (Sinauer)