Sapphire-supported nanopores for low-noise DNA sensing

被引:11
|
作者
Xia, Pengkun [1 ,2 ,3 ]
Zuo, Jiawei [1 ,2 ,3 ]
Paudel, Pravin [1 ,2 ]
Choi, Shinhyuk [1 ,2 ,3 ]
Chen, Xiahui [1 ,2 ,3 ]
Laskar, Md Ashiqur Rahman [1 ,2 ,3 ]
Bai, Jing [1 ,2 ]
Song, Weisi [4 ]
Im, JongOne [4 ,5 ]
Wang, Chao [1 ,2 ,3 ]
机构
[1] Arizona State Univ, Sch Elect Comp & Energy Engn, Tempe, AZ 85281 USA
[2] Arizona State Univ, Ctr Photon Innovat, Tempe, AZ USA
[3] Arizona State Univ, Biodesign Ctr Mol Design & Biomimet, Tempe, AZ USA
[4] Arizona State Univ, Biodesign Ctr Single Mol Biophys, Tempe, AZ USA
[5] INanoBio Inc, Scottsdale, AZ USA
来源
基金
美国国家科学基金会;
关键词
Low noise; Low capacitance; Signal-to-noise ratio; Sapphire etching; Scalable membrane fabrication; DNA sensing; SOLID-STATE NANOPORES; TRANS LOCATION; TRANSLOCATION;
D O I
10.1016/j.bios.2020.112829
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
Solid-state nanopores have broad applications from single-molecule biosensing to diagnostics and sequencing. The high capacitive noise from conventionally used conductive silicon substrates, however, has seriously limited both their sensing accuracy and recording speed. A new approach is proposed here for forming nanopore membranes on insulating sapphire wafers to promote low-noise nanopore sensing. Anisotmpic wet etching of sapphire through micro-patterned triangular masks is used to demonstrate the feasibility of scalable formation of small (<25 mu m) membranes with a size deviation of less than 7 mu m over two 2-inch wafers. For validation, a sapphire-supported (SaS) nanopore chip with a 100 times larger membrane area than conventional nanopores was tested, which showed 130 times smaller capacitance (10 pF) and 2.6 times smaller root-mean-square (RMS) noise current (18-21 pA over 100 kHz bandwidth, with 50-150 mV bias) when compared to a silicon-supported (SiS) nanopore (similar to 1.3 nF, and 46-51 pA RMS noise). Tested with 1k base-pair double-stranded DNA, the SaS nanopore enabled sensing at microsecond speed with a signal-to-noise ratio of 21, compared to 11 from a SiS nanopore. This SaS nanopore presents a manufacturable nanoelectmnic platform feasible for high-speed and low-noise sensing of a variety of biomolecules.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Digital and low-noise
    Bura, Peter M.
    F and M; Feinwerktechnik, Mikrotechnik, Messtechnik, 1998, 106 (09): : 617 - 619
  • [22] LOW-NOISE AMPLIFIER
    BORODIN, AM
    KAZAKOV, BM
    INSTRUMENTS AND EXPERIMENTAL TECHNIQUES, 1983, 26 (06) : 1365 - 1366
  • [23] LOW-NOISE PREAMPLIFIER
    KOKES, A
    CESKOSLOVENSKY CASOPIS PRO FYSIKU SEKCE A, 1969, 19 (02): : 256 - &
  • [24] Low-noise amplifier
    Gulkov, V. B.
    Makarenko, A. S.
    VISNYK NTUU KPI SERIIA-RADIOTEKHNIKA RADIOAPARATOBUDUVANNIA, 2012, (50): : 47 - 52
  • [25] Low-noise transformers
    Glaninger, P.
    BBC-Nachrichten (Brown, Boveri & Cie), 1984, 66 (9-10): : 315 - 322
  • [26] Low-Noise Techniques
    Bonani, Fabrizio
    Riddle, Alfred E.
    IEEE MICROWAVE MAGAZINE, 2021, 22 (07) : 23 - 23
  • [27] LOW-NOISE TAPE
    NEWMAN, JD
    AUDIO, 1972, 56 (07): : 8 - &
  • [28] A MEMS Low-Noise Sound Pressure Gradient Microphone With Capacitive Sensing
    Miles, Ronald N.
    Cui, Weili
    Su, Quang T.
    Homentcovschi, Dorel
    JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, 2015, 24 (01) : 241 - 248
  • [29] Precession Azimuth Sensing with Low-Noise Molecular Electronics Angular Sensors
    Zaitsev, Dmitry L.
    Agafonov, Vadim M.
    Egorov, Egor V.
    Antonov, Alexander N.
    Krishtop, Vladimir G.
    JOURNAL OF SENSORS, 2016, 2016
  • [30] LOW-NOISE BOLOMETER
    ADERIKHIN, VI
    MEASUREMENT TECHNIQUES, 1980, 23 (02) : 151 - 153