Sapphire-supported nanopores for low-noise DNA sensing

被引:11
|
作者
Xia, Pengkun [1 ,2 ,3 ]
Zuo, Jiawei [1 ,2 ,3 ]
Paudel, Pravin [1 ,2 ]
Choi, Shinhyuk [1 ,2 ,3 ]
Chen, Xiahui [1 ,2 ,3 ]
Laskar, Md Ashiqur Rahman [1 ,2 ,3 ]
Bai, Jing [1 ,2 ]
Song, Weisi [4 ]
Im, JongOne [4 ,5 ]
Wang, Chao [1 ,2 ,3 ]
机构
[1] Arizona State Univ, Sch Elect Comp & Energy Engn, Tempe, AZ 85281 USA
[2] Arizona State Univ, Ctr Photon Innovat, Tempe, AZ USA
[3] Arizona State Univ, Biodesign Ctr Mol Design & Biomimet, Tempe, AZ USA
[4] Arizona State Univ, Biodesign Ctr Single Mol Biophys, Tempe, AZ USA
[5] INanoBio Inc, Scottsdale, AZ USA
来源
基金
美国国家科学基金会;
关键词
Low noise; Low capacitance; Signal-to-noise ratio; Sapphire etching; Scalable membrane fabrication; DNA sensing; SOLID-STATE NANOPORES; TRANS LOCATION; TRANSLOCATION;
D O I
10.1016/j.bios.2020.112829
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
Solid-state nanopores have broad applications from single-molecule biosensing to diagnostics and sequencing. The high capacitive noise from conventionally used conductive silicon substrates, however, has seriously limited both their sensing accuracy and recording speed. A new approach is proposed here for forming nanopore membranes on insulating sapphire wafers to promote low-noise nanopore sensing. Anisotmpic wet etching of sapphire through micro-patterned triangular masks is used to demonstrate the feasibility of scalable formation of small (<25 mu m) membranes with a size deviation of less than 7 mu m over two 2-inch wafers. For validation, a sapphire-supported (SaS) nanopore chip with a 100 times larger membrane area than conventional nanopores was tested, which showed 130 times smaller capacitance (10 pF) and 2.6 times smaller root-mean-square (RMS) noise current (18-21 pA over 100 kHz bandwidth, with 50-150 mV bias) when compared to a silicon-supported (SiS) nanopore (similar to 1.3 nF, and 46-51 pA RMS noise). Tested with 1k base-pair double-stranded DNA, the SaS nanopore enabled sensing at microsecond speed with a signal-to-noise ratio of 21, compared to 11 from a SiS nanopore. This SaS nanopore presents a manufacturable nanoelectmnic platform feasible for high-speed and low-noise sensing of a variety of biomolecules.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] SAPPHIRE-SUPPORTED NANOPORES FOR LOW-NOISE DNA SENSING
    Xia, Pengkun
    Zuo, Jiawei
    Choi, Shinhyuk
    Chen, Xiahui
    Bai, Jing
    Wang, Chao
    2021 34TH IEEE INTERNATIONAL CONFERENCE ON MICRO ELECTRO MECHANICAL SYSTEMS (MEMS 2021), 2021, : 354 - 357
  • [2] DNA Trans location through Low-Noise Glass Nanopores
    Steinbock, Lorenz J.
    Bulushev, Roman D.
    Krishnan, Swati
    Raillon, Camille
    Radenovic, Aleksandra
    ACS NANO, 2013, 7 (12) : 11255 - 11262
  • [3] Heterogeneous sapphire-supported low-loss photonic platform
    Wang, Yubo
    Guo, Yu
    Zhou, Yiyu
    Xie, Hao
    Tang, Hong X.
    OPTICS EXPRESS, 2024, 32 (11): : 20146 - 20152
  • [4] Low-Noise Dual-Channel Current Amplifier for DNA Sensing with Solid-State Nanopores
    Carminati, M.
    Ferrari, G.
    Sampietro, M.
    Ivanov, A. P.
    Albrecht, T.
    2012 19th IEEE International Conference on Electronics, Circuits and Systems (ICECS), 2012, : 817 - 820
  • [5] LOW-NOISE FIBEROPTIC ROTATION SENSING
    BOHM, K
    RUSSER, P
    WEIDEL, E
    ULRICH, R
    OPTICS LETTERS, 1981, 6 (02) : 64 - 66
  • [6] Low-noise SiGe pMODFETs on sapphire with 116 GHz fmax
    Koester, S.J.
    Hammond, R.
    Chu, J.O.
    Mooney, P.M.
    Ott, J.A.
    Webster, C.S.
    Lagnado, I.
    de la Houssaye, P.R.
    Annual Device Research Conference Digest, 2000, : 31 - 32
  • [7] A FULLY RECONFIGURABLE LOW-NOISE BIOPOTENTIAL SENSING AMPLIFIER
    Wang, Tzu-Yun
    Lai, Min-Rui
    Twigg, Christopher M.
    Peng, Sheng-Yu
    2013 IEEE BIOMEDICAL CIRCUITS AND SYSTEMS CONFERENCE (BIOCAS), 2013, : 234 - 237
  • [8] LOW-NOISE NOISE
    PUMPLIN, J
    JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 1985, 78 (01): : 100 - 104
  • [9] High-Resolution and Low-Noise Single-Molecule Sensing with Bio-Inspired Solid-State Nanopores
    Zhou, Wanqi
    Guo, Yufeng
    Guo, Wanlin
    Qiu, Hu
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2024, 15 (20): : 5556 - 5563
  • [10] A 2.4-GHz silicon-on-sapphire CMOS low-noise amplifier
    Johnson, RA
    Chang, CE
    delaHoussaye, PR
    Wood, ME
    Garcia, GA
    Asbeck, PM
    Lagnado, I
    IEEE MICROWAVE AND GUIDED WAVE LETTERS, 1997, 7 (10): : 350 - 352