Regularity theory for the spatially homogeneous Boltzmann equation with cut-off

被引:90
作者
Mouhot, C [1 ]
Villani, C [1 ]
机构
[1] Ecole Normale Super Lyon, UMPA, F-69364 Lyon 07, France
关键词
D O I
10.1007/s00205-004-0316-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We develop the regularity theory of the spatially homogeneous Boltzmann equation with cut-off and hard potentials (for instance, hard spheres), by (i) revisiting the L-p theory to obtain constructive bounds, (ii) establishing propagation of smoothness and singularities, (iii) obtaining estimates on the decay of the singularities of the initial datum. Our proofs are based on a detailed study of the "regularity of the gain operator". An application to the long-time behavior is presented.
引用
收藏
页码:169 / 212
页数:44
相关论文
共 34 条
[1]   Strong L1 convergence to equilibrium without entropy conditions for the Boltzmann equation [J].
Abrahamsson, F .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1999, 24 (7-8) :1501-1535
[2]   Entropy dissipation and long-range interactions [J].
Alexandre, R ;
Desvillettes, L ;
Villani, C ;
Wennberg, B .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2000, 152 (04) :327-355
[3]  
[Anonymous], FLUGGES HDB PHYSIK
[4]   L-INFINITY ESTIMATES FOR THE SPACE HOMOGENEOUS BOLTZMANN-EQUATION [J].
ARKERYD, L .
JOURNAL OF STATISTICAL PHYSICS, 1983, 31 (02) :347-361
[5]  
ARKERYD L, 1972, ARCH RATION MECH AN, V45, P1
[7]   INTERMOLECULAR FORCES OF INFINITE RANGE AND THE BOLTZMANN-EQUATION [J].
ARKERYD, L .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1981, 77 (01) :11-21
[8]  
Bobylev A., 1988, SOV SCI REV C, V7, P111
[9]  
Bouchut F, 1998, REV MAT IBEROAM, V14, P47
[10]  
Carleman T., 1957, Problemes mathematiques dans la theorie cinetiquedes gaz