Interactive Physical Zero-Knowledge Proof for Norinori

被引:34
作者
Dumas, Jean-Guillaume [1 ]
Lafourcade, Pascal [2 ]
Miyahara, Daiki [3 ,5 ]
Mizuki, Takaaki [4 ]
Sasaki, Tatsuya [3 ]
Sone, Hideaki [4 ]
机构
[1] Univ Grenoble Alpes, CNRS, Grenoble INP, Inst Engn Univ Grenoble Alpes,LJK, F-38000 Grenoble, France
[2] Univ Clermont Auvergne, LIMOS, CNRS UMR 6158, Clermont Ferrand, France
[3] Tohoku Univ, Grad Sch Informat Sci, Sendai, Miyagi, Japan
[4] Tohoku Univ, Cybersci Ctr, Sendai, Miyagi, Japan
[5] Natl Inst Adv Ind Sci & Technol, Tokyo, Japan
来源
COMPUTING AND COMBINATORICS, COCOON 2019 | 2019年 / 11653卷
基金
欧盟地平线“2020”;
关键词
Zero-knowledge proofs; Card-based secure two-party protocols; Puzzle; Norinori; SUDOKU;
D O I
10.1007/978-3-030-26176-4_14
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Norinori is a logic game similar to Sudoku. In Norinori, a grid of cells has to be filled with either black or white cells so that the given areas contain exactly two black cells, and every black cell shares an edge with exactly one other black cell. We propose a secure interactive physical algorithm, relying only on cards, to realize a zero-knowledge proof of knowledge for Norinori. It allows a player to show that he or she knows a solution without revealing it. For this, we show in particular that it is possible to physically prove that a particular element is present in a list, without revealing any other value in the list, and without revealing the actual position of that element in the list.
引用
收藏
页码:166 / 177
页数:12
相关论文
共 13 条
[1]  
Biro M., 2017, P 33 EUR WORKSH COMP, P29
[2]  
Bultel X., 2016, FUN 2016 LIPICS, V49, p8:1
[3]   Physical Zero-Knowledge Proof for Makaro [J].
Bultel, Xavier ;
Dreier, Jannik ;
Dumas, Jean-Guillaume ;
Lafourcade, Pascal ;
Miyahara, Daiki ;
Mizuki, Takaaki ;
Nagao, Atsuki ;
Sasaki, Tatsuya ;
Shinagawa, Kazumasa ;
Sone, Hideaki .
STABILIZATION, SAFETY, AND SECURITY OF DISTRIBUTED SYSTEMS, SSS 2018, 2018, 11201 :111-125
[4]  
Chien YF, 2010, LECT NOTES COMPUT SC, V6099, P102
[5]  
Demaine ED, 2001, LECT NOTES COMPUT SC, V2136, P18
[6]  
GOLDREICH O, 1987, LECT NOTES COMPUT SC, V263, P171
[7]  
Gradwohl R, 2007, LECT NOTES COMPUT SC, V4475, P166
[8]  
Ishikawa Rie, 2015, Unconventional Computation and Natural Computation. 14th International Conference, UCNC 2015. Proceedings, P215, DOI 10.1007/978-3-319-21819-9_16
[9]  
Iwamoto C., 2018, LIPICS, V100
[10]  
Kendall G, 2008, ICGA J, V31, P13