Studies of phase transitions and quantum chaos relationships in extended Casten triangle of IBM-1

被引:2
|
作者
Proskurins, J. [1 ]
Andrejevs, A. [1 ]
Krasta, T. [1 ]
Tambergs, J. [1 ]
机构
[1] Latvian State Univ, Inst Solid State Phys, LV-1063 Riga, Latvia
关键词
D O I
10.1134/S1063778806070246
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
A precise solution of the classical energy functional E(N,eta,chi;beta) minimum problem with respect to deformation parameter beta is obtained for the simplified Casten version of the standard interacting boson model (IBM-1) Hamiltonian. The first-order phase transition lines as well as the critical points of X(5), (X) over bar (5), and E(5) symmetries are considered. The dynamical criteria of quantum chaos-the basis state fragmentation width and the wave function entropy-are studied for the (eta,chi) parameter space of the extended Casten triangle, and the possible relationships between these criteria and phase transition lines are discussed.
引用
收藏
页码:1248 / 1253
页数:6
相关论文
共 50 条
  • [41] Quantum phase transitions in spin-1 compass chains
    Guang-Hua Liu
    Long-Juan Kong
    Wen-Long You
    The European Physical Journal B, 2015, 88
  • [42] Bond-order-wave phase and quantum phase transitions in the one-dimensional extended Hubbard model
    Sengupta, P
    Sandvik, AW
    Campbell, DK
    PHYSICAL REVIEW B, 2002, 65 (15): : 1551131 - 15511318
  • [43] One-way deficit and quantum phase transitions in XY model and extended Ising model
    Yao-Kun Wang
    Yu-Ran Zhang
    Heng Fan
    Quantum Information Processing, 2019, 18
  • [44] One-way deficit and quantum phase transitions in XY model and extended Ising model
    Wang, Yao-Kun
    Zhang, Yu-Ran
    Fan, Heng
    QUANTUM INFORMATION PROCESSING, 2019, 18 (01)
  • [45] Dynamical quantum phase transitions in the one-dimensional extended Fermi-Hubbard model
    Mendoza-Arenas, Juan Jose
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2022, 2022 (04):
  • [46] Noise-induced chaos and 1/f Power Spectrum at Nonequilibrium Phase Transitions
    Koverda, V. P.
    Skokov, V. N.
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2022, 587
  • [47] Nonequilibrium Phase Transitions in (1+1)-Dimensional Quantum Cellular Automata with Controllable Quantum Correlations
    Gillman, Edward
    Carollo, Federico
    Lesanovsky, Igor
    PHYSICAL REVIEW LETTERS, 2020, 125 (10)
  • [48] Quantum phase transitions in the S=1/2 distorted diamond chain
    Li, Yan-Chao
    Li, Shu-Shen
    PHYSICAL REVIEW B, 2008, 78 (18)
  • [49] Quantum phase transitions of the S=1 Shastry-Sutherland model
    Koga, A
    Kawakami, N
    Sigrist, M
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2003, 72 (04) : 938 - 942
  • [50] Quantum-phase transitions in1DHeisenberg spin systems
    Cheranovskii, Vladyslav O.
    Slavin, Viktor V.
    Klein, Douglas J.
    INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 2021, 121 (05)