Nanoscratch-induced deformation of single crystal silicon

被引:54
作者
Wu, Y. Q. [1 ]
Huang, H. [1 ]
Zou, J. [1 ,2 ]
Dell, J. M. [3 ]
机构
[1] Univ Queensland, Sch Engn, Brisbane, Qld 4072, Australia
[2] Univ Queensland, Ctr Microscopy & Microanal, Brisbane, Qld 4072, Australia
[3] Univ Western Australia, Sch Elect Elect & Comp Engn, Perth, WA 6009, Australia
来源
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B | 2009年 / 27卷 / 03期
关键词
amorphisation; deformation; dislocation nucleation; elemental semiconductors; grinding; indentation; silicon; stacking faults; transmission electron microscopy; twin boundaries; TRANSMISSION ELECTRON-MICROSCOPY; MONOCRYSTALLINE SILICON; INDENTATION; MICROSTRUCTURE; BEHAVIOR;
D O I
10.1116/1.3049517
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The nanoscratching-induced deformation of monocrystalline Si has been investigated using transmission electron microscopy (TEM). The results indicate that amorphization and formation of crystalline defects are two dominant phenomena associated with the scratching processes. TEM analyses reveal that amorphization occurs at extremely small scratching loads. Stacking faults and twins are nucleated at a smaller load than that for dislocation. Dislocations start to nucleate along Si {111} planes when the normal scratching load is greater than a threshold value and penetrate deeper into the Si subsurface with the increasing load. Both normal load and tip radius have significant influence on the deformation, which are somehow different from those associated with nanoindentation and nanogrinding.
引用
收藏
页码:1374 / 1377
页数:4
相关论文
共 21 条
[1]   Transmission electron microscopy observation of deformation microstructure under spherical indentation in silicon [J].
Bradby, JE ;
Williams, JS ;
Wong-Leung, J ;
Swain, MV ;
Munroe, P .
APPLIED PHYSICS LETTERS, 2000, 77 (23) :3749-3751
[2]  
Fischer-Cripps A.C., 2000, MECH ENG S, P87
[3]   Deformation mechanisms of silicon during nanoscratching [J].
Gassilloud, R ;
Ballif, C ;
Gasser, P ;
Buerki, G ;
Michler, J .
PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 2005, 202 (15) :2858-2869
[4]   High-resolution transmission electron microscopy study of metastable silicon phases produced by nanoindentation [J].
Ge, DB ;
Domnich, V ;
Gogotsi, Y .
JOURNAL OF APPLIED PHYSICS, 2003, 93 (05) :2418-2423
[5]   Characteristics of silicon substrates fabricated using nanogrinding and chemo-mechanical-grinding [J].
Huang, H. ;
Wang, B. L. ;
Wang, Y. ;
Zou, J. ;
Zhou, L. .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2008, 479 (1-2) :373-379
[6]   Profile error compensation approaches for parallel nanogrinding of aspherical mould inserts [J].
Huang, H. ;
Chen, W. K. ;
Kuriyagawa, T. .
INTERNATIONAL JOURNAL OF MACHINE TOOLS & MANUFACTURE, 2007, 47 (15) :2237-2245
[7]   Subsurface Structures of Monocrystalline Silicon Generated by Nanogrinding [J].
Huang, H. ;
Wu, Y. Q. ;
Wang, Y. ;
Zou, J. ;
Zhou, L. .
ADVANCES IN ABRASIVE TECHNOLOGY XI, 2009, 389-390 :465-+
[8]   Pop-in effect as homogeneous nucleation of dislocations during nanoindentation [J].
Lorenz, D ;
Zeckzer, A ;
Hilpert, U ;
Grau, P ;
Johansen, H ;
Leipner, HS .
PHYSICAL REVIEW B, 2003, 67 (17)
[9]   High pressure crystalline phase formation during nanoindentation: Amorphous versus crystalline silicon [J].
Ruffell, S. ;
Bradby, J. E. ;
Williams, J. S. .
APPLIED PHYSICS LETTERS, 2006, 89 (09)
[10]  
Wang BL, 2008, KEY ENG MATER, V381-382, P525, DOI 10.4028/0-87849-382-4.525