Development of Crystalline Covalent Triazine Frameworks to Enable In Situ Preparation of Single-Atom Ni-N3-C for Efficient Electrochemical CO2 Reduction

被引:11
作者
Yang, Na [1 ,2 ]
Yang, Lan [3 ]
Zhu, Xiang [1 ,2 ]
Zhao, Peiqing [1 ,2 ]
Liu, Honglai [3 ]
Xia, Chungu [1 ,2 ]
Dai, Sheng [4 ]
Tian, Chengcheng [5 ]
机构
[1] Chinese Acad Sci, Suzhou Res Inst, State Key Lab Oxo Synth & Select Oxidat, Lanzhou Inst Chem Phys, Suzhou 215000, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 101408, Peoples R China
[3] East China Univ Sci & Technol, Sch Chem Engn, State Key Lab Chem Engn, Shanghai 200237, Peoples R China
[4] Oak Ridge Natl Lab, Chem Sci Div, Oak Ridge, TN 37831 USA
[5] East China Univ Sci & Technol, Sch Resources & Environm Engn, Shanghai 200237, Peoples R China
来源
ACS MATERIALS LETTERS | 2022年 / 4卷 / 11期
基金
中国国家自然科学基金;
关键词
ORGANIC FRAMEWORKS; TEMPERATURE; CATALYSTS;
D O I
10.1021/acsmaterialslett.2c00336
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The synthesis of highly crystalline covalent triazine frameworks (CTFs) with fully conjugated nitrogen-enriched architectures is a long-term challenging subject. Herein, a solvent-and catalyst-free approach was implemented for the first time to create crystalline CTFs based on a new trimerization of amidine-type monomers. A highly crystalline triazine-linked polymer with a specific surface area of 255 m(2) g(-1) was achieved, whereas additional aldehydes were no longer required. Furthermore, an in situ transformation strategy was developed by exploring a molten salt (ZnCl2) to promote this new condensation, so as to convert as-obtained CTFs into isolated single-atom catalysts (SACs). Interestingly, the usage of ZnCl2 not only enables a crystalline CTF with a significantly enhanced surface area, up to 663 m(2) g(-1) but also provides a means of realizing atomically dispersed nickel (Ni) catalysts with unique Ni-N-3-C sites. As a result, the resulting SAC exhibits efficient electrochemical carbon dioxide (CO2) reduction performance, where a maximum Faradaic efficiency for carbon monoxide (CO) production of 97.5% at -0.52 V (vs. reversible hydrogen electrode, RHE) and an excellent turnover frequency (3192 h(-1)) with a current density of 23.32 mA cm(-2) at -1.02 V can be obtained, respectively. We anticipate our findings will facilitate new possibilities for the development of crystalline porous organic frameworks and SACs for various catalysis.
引用
收藏
页码:2143 / 2150
页数:8
相关论文
共 66 条
[1]   Polymer photocatalysts for solar-to-chemical energy conversion [J].
Banerjee, Tanmay ;
Podjaski, Filip ;
Kroeger, Julia ;
Biswal, Bishnu P. ;
Lotsch, Bettina, V .
NATURE REVIEWS MATERIALS, 2021, 6 (02) :168-190
[2]   Single-Site Photocatalytic H2 Evolution from Covalent Organic Frameworks with Molecular Cobaloxime Co-Catalysts [J].
Banerjee, Tanmay ;
Haase, Frederik ;
Savasci, Goekcen ;
Gottschling, Kerstin ;
Ochsenfeld, Christian ;
Lotsch, Bettina V. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2017, 139 (45) :16228-16234
[3]   Atomic Bridging Structure of Nickel-Nitrogen-Carbon for Highly Efficient Electrocatalytic Reduction of CO2 [J].
Cao, Xueying ;
Zhao, Lanling ;
Wulan, Bari ;
Tan, Dongxing ;
Chen, Qianwu ;
Ma, Jizhen ;
Zhang, Jintao .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2022, 61 (06)
[4]   Covalent Organic Frameworks: Chemical Approaches to Designer Structures and Built-In Functions [J].
Chen, Xinyi ;
Geng, Keyu ;
Liu, Ruoyang ;
Tan, Ke Tian ;
Gong, Yifan ;
Li, Zhongping ;
Tao, Shanshan ;
Jiang, Qiuhong ;
Jiang, Donglin .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2020, 59 (13) :5050-5091
[5]   Single-Atom Catalysts: Synthetic Strategies and Electrochemical Applications [J].
Chen, Yuanjun ;
Ji, Shufang ;
Chen, Chen ;
Peng, Qing ;
Wang, Dingsheng ;
Li, Yadong .
JOULE, 2018, 2 (07) :1242-1264
[6]   The atom, the molecule, and the covalent organic framework [J].
Diercks, Christian S. ;
Yaghi, Omar M. .
SCIENCE, 2017, 355 (6328)
[7]   General synthesis and definitive structural identification of MN4C4 single-atom catalysts with tunable electrocatalytic activities [J].
Fei, Huilong ;
Dong, Juncai ;
Feng, Yexin ;
Allen, Christopher S. ;
Wan, Chengzhang ;
Volosskiy, Boris ;
Li, Mufan ;
Zhao, Zipeng ;
Wang, Yiliu ;
Sun, Hongtao ;
An, Pengfei ;
Chen, Wenxing ;
Guo, Zhiying ;
Lee, Chain ;
Chen, Dongliang ;
Shakir, Imran ;
Liu, Mingjie ;
Hu, Tiandou ;
Li, Yadong ;
Kirkland, Angus I. ;
Duan, Xiangfeng ;
Huang, Yu .
NATURE CATALYSIS, 2018, 1 (01) :63-72
[8]   A review of the aqueous electrochemical reduction of CO2 to hydrocarbons at copper [J].
Gattrell, M. ;
Gupta, N. ;
Co, A. .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2006, 594 (01) :1-19
[9]   Covalent Organic Frameworks: Design, Synthesis, and Functions [J].
Geng, Keyu ;
He, Ting ;
Liu, Ruoyang ;
Dalapati, Sasanka ;
Tan, Ke Tian ;
Li, Zhongping ;
Tao, Shanshan ;
Gong, Yifan ;
Jiang, Qiuhong ;
Jiang, Donglin .
CHEMICAL REVIEWS, 2020, 120 (16) :8814-8933
[10]   Connections between the Speciation and Solubility of Ni(II) and Co(II) in Molten ZnCl2 [J].
Gill, Simerjeet K. ;
Huang, Jiahao ;
Mausz, Julia ;
Gakhar, Ruchi ;
Roy, Santanu ;
Vila, Fernando ;
Topsakal, Mehmet ;
Phillips, William C. ;
Layne, Bobby ;
Mahurin, Shannon ;
Halstenberg, Phillip ;
Dai, Sheng ;
Wishart, James F. ;
Bryantsev, Vyacheslav S. ;
Frenkel, Anatoly, I .
JOURNAL OF PHYSICAL CHEMISTRY B, 2020, 124 (07) :1253-1258