Development of Crystalline Covalent Triazine Frameworks to Enable In Situ Preparation of Single-Atom Ni-N3-C for Efficient Electrochemical CO2 Reduction

被引:11
作者
Yang, Na [1 ,2 ]
Yang, Lan [3 ]
Zhu, Xiang [1 ,2 ]
Zhao, Peiqing [1 ,2 ]
Liu, Honglai [3 ]
Xia, Chungu [1 ,2 ]
Dai, Sheng [4 ]
Tian, Chengcheng [5 ]
机构
[1] Chinese Acad Sci, Suzhou Res Inst, State Key Lab Oxo Synth & Select Oxidat, Lanzhou Inst Chem Phys, Suzhou 215000, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 101408, Peoples R China
[3] East China Univ Sci & Technol, Sch Chem Engn, State Key Lab Chem Engn, Shanghai 200237, Peoples R China
[4] Oak Ridge Natl Lab, Chem Sci Div, Oak Ridge, TN 37831 USA
[5] East China Univ Sci & Technol, Sch Resources & Environm Engn, Shanghai 200237, Peoples R China
来源
ACS MATERIALS LETTERS | 2022年 / 4卷 / 11期
基金
中国国家自然科学基金;
关键词
ORGANIC FRAMEWORKS; TEMPERATURE; CATALYSTS;
D O I
10.1021/acsmaterialslett.2c00336
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The synthesis of highly crystalline covalent triazine frameworks (CTFs) with fully conjugated nitrogen-enriched architectures is a long-term challenging subject. Herein, a solvent-and catalyst-free approach was implemented for the first time to create crystalline CTFs based on a new trimerization of amidine-type monomers. A highly crystalline triazine-linked polymer with a specific surface area of 255 m(2) g(-1) was achieved, whereas additional aldehydes were no longer required. Furthermore, an in situ transformation strategy was developed by exploring a molten salt (ZnCl2) to promote this new condensation, so as to convert as-obtained CTFs into isolated single-atom catalysts (SACs). Interestingly, the usage of ZnCl2 not only enables a crystalline CTF with a significantly enhanced surface area, up to 663 m(2) g(-1) but also provides a means of realizing atomically dispersed nickel (Ni) catalysts with unique Ni-N-3-C sites. As a result, the resulting SAC exhibits efficient electrochemical carbon dioxide (CO2) reduction performance, where a maximum Faradaic efficiency for carbon monoxide (CO) production of 97.5% at -0.52 V (vs. reversible hydrogen electrode, RHE) and an excellent turnover frequency (3192 h(-1)) with a current density of 23.32 mA cm(-2) at -1.02 V can be obtained, respectively. We anticipate our findings will facilitate new possibilities for the development of crystalline porous organic frameworks and SACs for various catalysis.
引用
收藏
页码:2143 / 2150
页数:8
相关论文
共 66 条
  • [1] Polymer photocatalysts for solar-to-chemical energy conversion
    Banerjee, Tanmay
    Podjaski, Filip
    Kroeger, Julia
    Biswal, Bishnu P.
    Lotsch, Bettina, V
    [J]. NATURE REVIEWS MATERIALS, 2021, 6 (02) : 168 - 190
  • [2] Single-Site Photocatalytic H2 Evolution from Covalent Organic Frameworks with Molecular Cobaloxime Co-Catalysts
    Banerjee, Tanmay
    Haase, Frederik
    Savasci, Goekcen
    Gottschling, Kerstin
    Ochsenfeld, Christian
    Lotsch, Bettina V.
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2017, 139 (45) : 16228 - 16234
  • [3] Atomic Bridging Structure of Nickel-Nitrogen-Carbon for Highly Efficient Electrocatalytic Reduction of CO2
    Cao, Xueying
    Zhao, Lanling
    Wulan, Bari
    Tan, Dongxing
    Chen, Qianwu
    Ma, Jizhen
    Zhang, Jintao
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2022, 61 (06)
  • [4] Covalent Organic Frameworks: Chemical Approaches to Designer Structures and Built-In Functions
    Chen, Xinyi
    Geng, Keyu
    Liu, Ruoyang
    Tan, Ke Tian
    Gong, Yifan
    Li, Zhongping
    Tao, Shanshan
    Jiang, Qiuhong
    Jiang, Donglin
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2020, 59 (13) : 5050 - 5091
  • [5] Single-Atom Catalysts: Synthetic Strategies and Electrochemical Applications
    Chen, Yuanjun
    Ji, Shufang
    Chen, Chen
    Peng, Qing
    Wang, Dingsheng
    Li, Yadong
    [J]. JOULE, 2018, 2 (07) : 1242 - 1264
  • [6] The atom, the molecule, and the covalent organic framework
    Diercks, Christian S.
    Yaghi, Omar M.
    [J]. SCIENCE, 2017, 355 (6328)
  • [7] General synthesis and definitive structural identification of MN4C4 single-atom catalysts with tunable electrocatalytic activities
    Fei, Huilong
    Dong, Juncai
    Feng, Yexin
    Allen, Christopher S.
    Wan, Chengzhang
    Volosskiy, Boris
    Li, Mufan
    Zhao, Zipeng
    Wang, Yiliu
    Sun, Hongtao
    An, Pengfei
    Chen, Wenxing
    Guo, Zhiying
    Lee, Chain
    Chen, Dongliang
    Shakir, Imran
    Liu, Mingjie
    Hu, Tiandou
    Li, Yadong
    Kirkland, Angus I.
    Duan, Xiangfeng
    Huang, Yu
    [J]. NATURE CATALYSIS, 2018, 1 (01): : 63 - 72
  • [8] A review of the aqueous electrochemical reduction of CO2 to hydrocarbons at copper
    Gattrell, M.
    Gupta, N.
    Co, A.
    [J]. JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2006, 594 (01) : 1 - 19
  • [9] Covalent Organic Frameworks: Design, Synthesis, and Functions
    Geng, Keyu
    He, Ting
    Liu, Ruoyang
    Dalapati, Sasanka
    Tan, Ke Tian
    Li, Zhongping
    Tao, Shanshan
    Gong, Yifan
    Jiang, Qiuhong
    Jiang, Donglin
    [J]. CHEMICAL REVIEWS, 2020, 120 (16) : 8814 - 8933
  • [10] Connections between the Speciation and Solubility of Ni(II) and Co(II) in Molten ZnCl2
    Gill, Simerjeet K.
    Huang, Jiahao
    Mausz, Julia
    Gakhar, Ruchi
    Roy, Santanu
    Vila, Fernando
    Topsakal, Mehmet
    Phillips, William C.
    Layne, Bobby
    Mahurin, Shannon
    Halstenberg, Phillip
    Dai, Sheng
    Wishart, James F.
    Bryantsev, Vyacheslav S.
    Frenkel, Anatoly, I
    [J]. JOURNAL OF PHYSICAL CHEMISTRY B, 2020, 124 (07) : 1253 - 1258