Existence results for singular integral equations of Fredholm type

被引:0
作者
Agarwal, RP
O'Regan, D
机构
[1] Natl Univ Singapore, Dept Math, Singapore 119260, Singapore
[2] Natl Univ Ireland Univ Coll Galway, Dept Math, Galway, Ireland
关键词
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
New existence results are presented for the singular integral equation y(t) = theta(t) + integral(0)(1) k(t, s)[g(y(s)) + h(y(s))] ds, t is an element of [0, 1]. Our nonlinear term g + h may be singular at y = 0. (C) 2000 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:27 / 34
页数:8
相关论文
共 50 条
[31]   THE CONDITIONING OF SOME PROJECTION METHODS FOR FREDHOLM AND SINGULAR INTEGRAL-EQUATIONS [J].
GOLBERG, MA ;
BOWMAN, H .
APPLIED MATHEMATICS AND COMPUTATION, 1990, 40 (02) :165-178
[32]   Hybrid collocation methods for Fredholm integral equations with weakly singular kernels [J].
Cao, Yanzhao ;
Huang, Min ;
Liu, Liping ;
Xu, Yuesheng .
APPLIED NUMERICAL MATHEMATICS, 2007, 57 (5-7) :549-561
[33]   Quadratic Spline Collocation for the Smoothed Weakly Singular Fredholm Integral Equations [J].
Pallav, Rene ;
Pedas, Arvet .
NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2009, 30 (9-10) :1048-1064
[34]   On the numerical solution of strongly singular Fredholm integral equations of the second kind [J].
Okecha, GE .
INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 1999, 71 (04) :531-540
[35]   On the regularization method for Fredholm integral equations with odd weakly singular kernel [J].
Noureddine Benrabia ;
Hamza Guebbai .
Computational and Applied Mathematics, 2018, 37 :5162-5174
[36]   THEORETICAL AND COMPUTATIONAL RESULTS FOR MIXED TYPE VOLTERRA-FREDHOLM FRACTIONAL INTEGRAL EQUATIONS [J].
Amin, Rohul ;
Alrabaiah, Hussam ;
Mahariq, Ibrahim ;
Zeb, Anwar .
FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2022, 30 (01)
[37]   Singular integral equations of the Volterra type [J].
Love, Clyde E. .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1914, 15 (1-4) :467-476
[38]   On the existence and uniqueness of solutions of fuzzy Volterra-Fredholm integral equations [J].
Park, JY ;
Jeong, JU .
FUZZY SETS AND SYSTEMS, 2000, 115 (03) :425-431
[39]   Existence of solutions of nonlinear fuzzy Volterra-Fredholm integral equations [J].
Balachandran, K ;
Prakash, P .
INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2002, 33 (03) :329-343
[40]   Existence of solutions of general nonlinear stochastic Volterra Fredholm integral equations [J].
Balachandran, K ;
Sumathy, K ;
Kuo, HH .
STOCHASTIC ANALYSIS AND APPLICATIONS, 2005, 23 (04) :827-851