Direct comparisons between numerical simulations and the measured plasma fluctuations and transport are presented by performing nonlinear two-fluid simulations with the BOUT code (Xu X Q and Cohen R H 1998 Contrib. Plasma Phys. 38 158). BOUT models boundary-plasma turbulence in a realistic divertor geometry using modified Braginskii equations for plasma vorticity, density (n(i)), electron and ion temperature (T-e, T-i) and parallel momenta. The BOUT code solves for the plasma fluid equations in a 3D toroidal segment, including the region somewhat inside the separatrix and extending into the scrape-off layer; the private flux region is also included. In this paper, the physics of resistive X-point turbulence and its relation to flow shear generation is discussed. We present comparisons between the boundary plasma turbulence observed in the BOUT code and experiments on DIII-D (Luxon J L et al 1986 Int. Conf. on Plasma Physics and Controlled Nuclear Fusion (Vienna: IAEA) p 159), the National Spherical Torus Experiment (Peng Y-K M 2000 Phys. Plasmas 7 1681), and C-Mod (Hutchinson I H et al 1994 Phys. Plasmas 1 1511). In an L-mode discharge in the DIII-D tokamak, both BOUT simulations and beam emission spectroscopy show a similar flow pattern and blob size across the last closed flux surface. In an L-mode discharge, both BOUT simulations and gas puff imaging show similar filament structures along the field line and similar frequency spectrum at the outboard midplane. In simulations of the quasi-coherent mode in the EDA regime of C-Mod, the particle flux measured from BOUT simulation is consistent with Langmuir probe measurements on C-Mod at the midplane near the separatrix. The qualitative comparisons thus indicate that BOUT contains much of the relevant physics for boundary plasma turbulence in the experimentally relevant X-point divertor geometry of present-day tokamaks and spherical tori.