Electric-field-induced two-dimensional hole gas in undoped GaSb quantum wells

被引:5
作者
Shibata, K. [1 ,2 ]
Karalic, M. [1 ]
Mittag, C. [1 ]
Tschirky, T. [1 ]
Reichl, C. [1 ]
Ito, H. [2 ]
Hashimoto, K. [3 ,4 ]
Tomimatsu, T. [3 ]
Hirayama, Y. [3 ,4 ,5 ]
Wegscheider, W. [1 ]
Ihn, T. [1 ]
Ensslin, K. [1 ]
机构
[1] Swiss Fed Inst Technol, Solid State Phys Lab, CH-8093 Zurich, Switzerland
[2] Tohoku Inst Technol, Sendai, Miyagi 9828577, Japan
[3] Tohoku Univ, Grad Sch Sci, Sendai, Miyagi 9808578, Japan
[4] Tohoku Univ, Ctr Spintron Res Network, Sendai, Miyagi 9808577, Japan
[5] Tohoku Univ, Ctr Sci & Innovat Spintron, Core Res Cluster, Sendai, Miyagi 9808577, Japan
关键词
MOBILITY; ANTIMONIDE;
D O I
10.1063/1.5093133
中图分类号
O59 [应用物理学];
学科分类号
摘要
We have measured hole transport in electrically induced two-dimensional hole gases in undoped GaSb/AlSb quantum wells. In order to access the electrically induced two-dimensional hole gas in GaSb quantum wells, recessed ohmic contacts were formed and the low-temperature magnetoresistance was measured for a gate-defined Hall bar geometry. The mobility of the sample increases with increasing hole density and reaches 20000cm(2)/Vs at a hole density of 5.3x10(11)cm(-2) for an 8-nm-thick GaSb quantum well. The longitudinal and Hall resistivities show Shubnikov-de Haas oscillations and integer quantum Hall plateaus, respectively. These results establish a platform for realizing spin-based electronics using the strong spin-orbit interaction of this material and are also useful for understanding the transport properties of the two-dimensional topological insulator realized in InAs/GaSb double quantum well structures.
引用
收藏
页数:4
相关论文
共 34 条
[1]  
[Anonymous], 2003, SPIN ORBIT COUPLING
[2]   Antimonide-based compound semiconductors for electronic devices: A review [J].
Bennett, BR ;
Magno, R ;
Boos, JB ;
Kruppa, W ;
Ancona, MG .
SOLID-STATE ELECTRONICS, 2005, 49 (12) :1875-1895
[3]   Enhanced hole mobility and density in GaSb quantum wells [J].
Bennett, Brian R. ;
Chick, Theresa F. ;
Ancona, Mario G. ;
Boos, J. Brad .
SOLID-STATE ELECTRONICS, 2013, 79 :274-280
[4]   Strained GaSb/AlAsSb quantum wells for p-channel field-effect transistors [J].
Bennett, Brian R. ;
Ancona, Mario G. ;
Boos, J. Brad ;
Canedy, Corwyn B. ;
Khan, Saara A. .
JOURNAL OF CRYSTAL GROWTH, 2008, 311 (01) :47-53
[5]   Quantum spin hall effect [J].
Bernevig, BA ;
Zhang, SC .
PHYSICAL REVIEW LETTERS, 2006, 96 (10)
[6]   High-Mobility GaSb Nanostructures Cointegrated with InAs on Si [J].
Borg, Mattias ;
Schmid, Heinz ;
Gooth, Johannes ;
Rossell, Marta D. ;
Cutaia, Davide ;
Knoedler, Moritz ;
Bologna, Nicolas ;
Wirths, Stephan ;
Moselund, Kirsten E. ;
Riel, Heike .
ACS NANO, 2017, 11 (03) :2554-2560
[7]   Ultra-high hole mobility exceeding one million in a strained germanium quantum well [J].
Dobbie, A. ;
Myronov, M. ;
Morris, R. J. H. ;
Hassan, A. H. A. ;
Prest, M. J. ;
Shah, V. A. ;
Parker, E. H. C. ;
Whall, T. E. ;
Leadley, D. R. .
APPLIED PHYSICS LETTERS, 2012, 101 (17)
[8]   Robust Helical Edge Transport in Gated InAs/GaSb Bilayers [J].
Du, Lingjie ;
Knez, Ivan ;
Sullivan, Gerard ;
Du, Rui-Rui .
PHYSICAL REVIEW LETTERS, 2015, 114 (09)
[9]   The physics and technology of gallium antimonide: An emerging optoelectronic material [J].
Dutta, PS ;
Bhat, HL ;
Kumar, V .
JOURNAL OF APPLIED PHYSICS, 1997, 81 (09) :5821-5870
[10]   Transport of modulation-doped Al0.2Ga0.8Sb/GaSb heterojunctions [J].
Hanks, L. A. ;
Hayne, M. ;
Marshall, A. R. J. ;
Ponomarenko, L. .
ADVANCES IN QUANTUM TRANSPORT IN LOW DIMENSIONAL SYSTEMS, 2018, 964