Lattice surfaces and smallest triangles

被引:1
|
作者
Wu, Chenxi [1 ]
机构
[1] Cornell Univ, Dept Math, White Hall, Ithaca, NY 14853 USA
关键词
Translation surface; Lattice surface; Thurston-Veech construction; TEICHMULLER-CURVES; MODULI SPACE; BILLIARDS; GENUS-2;
D O I
10.1007/s10711-016-0191-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We calculate the area of the smallest triangle and the area of the smallest virtual triangle for many known lattice surfaces. We show that our list of the lattice surfaces for which the area of the smallest virtual triangle greater than 1/20 is complete. In particular, this means that there are no new lattice surfaces for which the area of the smallest virtual triangle is greater than .05. Our method follows an algorithm described by Smillie and Weiss and improves on it in certain respects.
引用
收藏
页码:107 / 121
页数:15
相关论文
共 50 条
  • [1] Lattice surfaces and smallest triangles
    Chenxi Wu
    Geometriae Dedicata, 2017, 187 : 107 - 121
  • [2] On smallest triangles
    Grimmett, G
    Janson, S
    RANDOM STRUCTURES & ALGORITHMS, 2003, 23 (02) : 206 - 223
  • [3] Heronian triangles are lattice triangles
    Yiu, P
    AMERICAN MATHEMATICAL MONTHLY, 2001, 108 (03): : 261 - 263
  • [4] Smallest universal covers for families of triangles
    Park, Ji-won
    Cheong, Otfried
    COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2021, 92
  • [5] The smallest convex cover for triangles of perimeter two
    Füredi, Z
    Wetzel, JE
    GEOMETRIAE DEDICATA, 2000, 81 (1-3) : 285 - 293
  • [6] The Smallest Convex Cover for Triangles of Perimeter Two
    Zoltan Füredi
    John E. Wetzel
    Geometriae Dedicata, 2000, 81 : 285 - 293
  • [7] The smallest triangular cover for triangles of diameter one
    Yuan L.
    Ding R.
    Journal of Applied Mathematics and Computing, 2005, 17 (1-2) : 39 - 48
  • [8] Largest and smallest area triangles on imprecise points
    Keikha, Vahideh
    Loffler, Maarten
    Mohades, Ali
    COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2021, 95
  • [9] On the area and the lattice diameter of lattice triangles
    Popescu, Calin
    BULLETIN MATHEMATIQUE DE LA SOCIETE DES SCIENCES MATHEMATIQUES DE ROUMANIE, 2025, 68 (01): : 59 - 62
  • [10] FINDING THE SMALLEST TRIANGLES CONTAINING A GIVEN CONVEX POLYGON
    KLEE, V
    LASKOWSKI, MC
    JOURNAL OF ALGORITHMS, 1985, 6 (03) : 359 - 375