A seminumerical approach for heat diffusion in heterogeneous media: One extension of the analytical quadrupole method

被引:21
作者
Fudym, O
Ladevie, B
Batsale, JC
机构
[1] Univ Santiago Chile, Dept Ingn Mecan, Santiago, Chile
[2] Ecole Mines Albi, CNRS, UMR 2392, Ctr Energet Environm, Albi, France
[3] ENSAM, CNRS, UMR 8508, LEPT, Talence, France
关键词
D O I
10.1080/10407790190053978
中图分类号
O414.1 [热力学];
学科分类号
摘要
The analytical thermal quadrupole method is suitable for the modeling of multidimensional transient heat diffusion in homogeneous media, especially when applied to multilayered media. Here, we propose a new approach in order to extend the quadrupole frame to heterogeneous media. A seminumerical general solution is proposed for transient heat transfer in finite or semi-infinite media in both axial and radial coordinate systems, when the variation of thermal properties is one-dimensional. The presentation of the method is explained with a 2-D two-layer slab case. Some application examples are then presented from this basic case. The analytical expressions allow deep insight about the physical phenomenon.
引用
收藏
页码:325 / 348
页数:24
相关论文
共 18 条
[11]  
Ozisik N., 1993, HEAT CONDUCTION
[12]   BOUNDARY ELEMENT APPROACH FOR TRANSIENT AND NONLINEAR THERMAL-DIFFUSION [J].
PASQUETTI, R ;
CARUSO, A .
NUMERICAL HEAT TRANSFER PART B-FUNDAMENTALS, 1990, 17 (01) :83-99
[13]  
Patankar S.V., 1980, Numerical Heat Transfer and Fluid-Flow, DOI 10.1201/9781482234213
[14]  
Quintard M., 1993, ADV HEAT TRANSFER, V23, P369, DOI DOI 10.1016/S0065-2717(08)70009-1
[15]  
STEHFEST H, 1970, ACM, V53, P624
[16]   BOUNDARY VALUE PROBLEMS IN COMPOSITE MEDIA - QUASI-ORTHOGONAL FUNCTIONS [J].
TITTLE, CW .
JOURNAL OF APPLIED PHYSICS, 1965, 36 (04) :1486-&
[17]  
YAN L, 1993, ASME, V115, P276
[18]  
ZHANG X, 1993, THESIS INPL