Igneous mineralogy at Bradbury Rise: The first ChemCam campaign at Gale crater

被引:115
作者
Sautter, V. [1 ]
Fabre, C. [2 ]
Forni, O. [3 ]
Toplis, M. J. [3 ]
Cousin, A. [4 ]
Ollila, A. M. [5 ]
Meslin, P. Y. [3 ]
Maurice, S. [3 ]
Wiens, R. C. [4 ]
Baratoux, D. [3 ]
Mangold, N. [6 ]
Le Mouelic, S. [6 ]
Gasnault, O. [3 ]
Berger, G. [3 ]
Lasue, J. [3 ]
Anderson, R. A. [7 ]
Lewin, E. [8 ]
Schmidt, M. [9 ]
Dyar, D. [10 ]
Ehlmann, B. L. [11 ]
Bridges, J. [12 ]
Clark, B. [13 ]
Pinet, P. [3 ]
机构
[1] MNHN, CNRS UMR 7202, LMCM, FR-75005 Paris, France
[2] Univ Lorraine, CNRS UMR GeoRessources 7359, Nancy, France
[3] Univ Toulouse, CNRS UMR IRAP 7277, Toulouse, France
[4] Los Alamos Natl Lab, Los Alamos, NM USA
[5] Univ New Mexico, Inst Meteorit, Albuquerque, NM 87131 USA
[6] LPG Nantes, CNRS UMR 6112, Nantes, France
[7] US Geol Survey, Flagstaff, AZ 86001 USA
[8] Univ Grenoble, CNRS UMR 5275, ISTerre, Grenoble, France
[9] Brock Univ, Dept Earth Sci, St Catharines, ON L2S 3A1, Canada
[10] Mt Holyoke Coll, Dept Astron, S Hadley, MA 01075 USA
[11] CALTECH, Div Geol & Planetary Sci, Pasadena, CA 91125 USA
[12] Univ Leicester, SRC, Leicester, Leics, England
[13] Space Sci Inst, Boulder, CO USA
关键词
Curiosity; Gale Crater; igneous rocks; feldspar; laser-induced breakdown spectroscopy (LIBS); ChemCam; INSTRUMENT SUITE; MARS; SCIENCE; ROVER; GEOCHEMISTRY; TARGETS; CRUST; UNIT;
D O I
10.1002/2013JE004472
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Textural and compositional analyses using Chemistry Camera (ChemCam) remote microimager and laser-induced breakdown spectroscopy (LIBS) have been performed on five float rocks and coarse gravels along the first 100 m of the Curiosity traverse at Bradbury Rise. ChemCam, the first LIBS instrument sent to another planet, offers the opportunity to assess mineralogic diversity at grain-size scales (similar to 100 mu m) and, from this, lithologic diversity. Depth profiling indicates that targets are relatively free of surface coatings. One type of igneous rock is volcanic and includes both aphanitic (Coronation) and porphyritic (Mara) samples. The porphyritic sample shows dark grains that are likely pyroxene megacrysts in a fine-grained mesostasis containing andesine needles. Both types have magnesium-poor basaltic compositions and in this respect are similar to the evolved Jake Matijevic rock analyzed further along the Curiosity traverse both with Alpha-Particle X-ray Spectrometer and ChemCam instruments. The second rock type encountered is a coarse-grained intrusive rock (Thor Lake) showing equigranular texture with millimeter size crystals of feldspars and Fe-Ti oxides. Such a rock is not unique at Gale as the surrounding coarse gravels (such as Beaulieu) and the conglomerate Link are dominated by feldspathic (andesine-bytownite) clasts. Finally, alkali feldspar compositions associated with a silica polymorph have been analyzed in fractured filling material of Preble rock and in Stark, a putative pumice or an impact melt. These observations document magmatic diversity at Gale and describe the first fragments of feldspar-rich lithologies (possibly an anorthosite) that may be ancient crust transported from the crater rim and now forming float rocks, coarse gravel, or conglomerate clasts.
引用
收藏
页码:30 / 46
页数:17
相关论文
共 58 条
[1]   Unique Meteorite from Early Amazonian Mars: Water-Rich Basaltic Breccia Northwest Africa 7034 [J].
Agee, Carl B. ;
Wilson, Nicole V. ;
McCubbin, Francis M. ;
Ziegler, Karen ;
Polyak, Victor J. ;
Sharp, Zachary D. ;
Asmerom, Yemane ;
Nunn, Morgan H. ;
Shaheen, Robina ;
Thiemens, Mark H. ;
Steele, Andrew ;
Fogel, Marilyn L. ;
Bowden, Roxane ;
Glamoclija, Mihaela ;
Zhang, Zhisheng ;
Elardo, Stephen M. .
SCIENCE, 2013, 339 (6121) :780-785
[2]   Clustering and training set selection methods for improving the accuracy of quantitative laser induced breakdown spectroscopy [J].
Anderson, Ryan B. ;
Bell, James F., III ;
Wiens, Roger C. ;
Morris, Richard V. ;
Clegg, Samuel M. .
SPECTROCHIMICA ACTA PART B-ATOMIC SPECTROSCOPY, 2012, 70 :24-32
[3]  
[Anonymous], 2011, MARS METEORITE COMPE
[4]  
Ashwal L.D., 1993, Anorthosites, V21
[5]  
Bandfield J.L., 2004, Journal of Geophysical Research, V109
[6]   Thermal history of Mars inferred from orbital geochemistry of volcanic provinces [J].
Baratoux, David ;
Toplis, Michael J. ;
Monnereau, Marc ;
Gasnault, Olivier .
NATURE, 2011, 472 (7343) :338-U235
[7]   X-ray Diffraction Results from Mars Science Laboratory: Mineralogy of Rocknest at Gale Crater [J].
Bish, D. L. ;
Blake, D. F. ;
Vaniman, D. T. ;
Chipera, S. J. ;
Morris, R. V. ;
Ming, D. W. ;
Treiman, A. H. ;
Sarrazin, P. ;
Morrison, S. M. ;
Downs, R. T. ;
Achilles, C. N. ;
Yen, A. S. ;
Bristow, T. F. ;
Crisp, J. A. ;
Morookian, J. M. ;
Farmer, J. D. ;
Rampe, E. B. ;
Stolper, E. M. ;
Spanovich, N. .
SCIENCE, 2013, 341 (6153)
[8]  
Blaney D. L., 2013, LUN PLAN SCI 44 HOUS
[9]  
Bourke M. C., 2007, PETROGRAPHIC ATLAS R
[10]   Martian meteorite chronology and the evolution of the interior of Mars [J].
Bouvier, Audrey ;
Blichert-Toft, Janne ;
Albarede, Francis .
EARTH AND PLANETARY SCIENCE LETTERS, 2009, 280 (1-4) :285-295