MICROSTRUCTURE EVOLUTION AND MECHANICAL PROPERTIES OF UNDERWATER DRY WELDED METAL OF HIGH STRENGTH STEEL Q690E UNDER DIFFERENT WATER DEPTHS

被引:16
作者
Sun, Kun [1 ,2 ]
Hu, Yu [3 ]
Shi, Yonghua [1 ,2 ]
Liao, Baoyi [1 ,2 ]
机构
[1] South China Univ Technol, Sch Mech & Automot Engn, Guangzhou 510640, Peoples R China
[2] South China Univ Technol, Guangdong Prov Engn Res Ctr Special Welding Techn, Guangzhou 510640, Peoples R China
[3] Foshan Univ, Sch Mechatron Engn & Automat, Foshan 528000, Peoples R China
基金
中国国家自然科学基金;
关键词
underwater dry welding; high strength low alloy steel; water depth; microstructural evolution; mechanical property; ACICULAR FERRITE; HEAT INPUT; TOUGHNESS; FRACTURE; BEHAVIOR;
D O I
10.2478/pomr-2020-0071
中图分类号
U6 [水路运输]; P75 [海洋工程];
学科分类号
0814 ; 081505 ; 0824 ; 082401 ;
摘要
Q690E high strength low alloy (HSLA) steel has been intensively applied in maritime engineering. Also, the underwater dry welding (UDW) technique has been widely used to repair important offshore facilities. In this paper, joints of Q690E steel were fabricated through single-pass underwater dry welding at three pressures (0, 0.2, and 0.4 MPa). To study the effect of the pressure on the microstructure and mechanical properties of the UDW joint, an optical microscope (OM) and scanning electron microscope (SEM) were used to observe the microstructure and fracture morphology of the welded joints. The electron backscattered diffraction (EBSD) technique was used to analyse the crystallographic features and the crystallographic grain size of the ferrites. The proportion of acicular ferrite (AF) in the UDW joints and the density of low-angle boundaries increase dramatically with the increasing depth of water. The weld metal of UDW-40 shows higher strength because more fine ferrites and low-angle boundaries within UDW-40 impede the dislocation movement.
引用
收藏
页码:112 / 119
页数:8
相关论文
共 35 条
[1]  
[Anonymous], 2000, FLAT ROLLING FUNDAME
[2]  
ASTM, 2016, ASTM E8/E8M-16ae1
[3]   Statistical analysis of the arc behavior in dry hyperbaric GMA welding from 1 to 250 bar [J].
Azar, Amin S. ;
Woodward, Neil ;
Fostervoll, Hans ;
Akselsen, Odd M. .
JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 2012, 212 (01) :211-219
[4]  
Babu S.S., 1992, Acicular Ferrite and Bainite in Fe-Cr-C Weld Deposits
[5]  
Barnabas S. Godwin, 2020, MATER TODAY-PROC
[6]  
Bayley CJ, 2009, CAN METALL QUART, V48, P311, DOI 10.1179/000844309794239026
[7]   Dry hyperbaric welding of HSLA steel up to 35 bar ambient pressure with CMT arc mode [J].
Bunaziv, Ivan ;
Aune, Ragnhild ;
Olden, Vigdis ;
Akselsen, Odd M. .
INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2019, 105 (5-6) :2659-2676
[8]   Insight into hydrostatic pressure effects on diffusible hydrogen content in wet welding joints using in-situ X-ray imaging method [J].
Chen, Hao ;
Guo, Ning ;
Liu, Cheng ;
Zhang, Xin ;
Xu, Changsheng ;
Wang, Guodong .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2020, 45 (16) :10219-10226
[9]   In-situ observations of melt degassing and hydrogen removal enhanced by ultrasonics in underwater wet welding [J].
Chen, Hao ;
Guo, Ning ;
Xu, Kexin ;
Xu, Changsheng ;
Zhou, Li ;
Wang, Guodong .
MATERIALS & DESIGN, 2020, 188
[10]  
DAVIS CL, 1993, MATER SCI TECH SER, V9, P8, DOI 10.1179/026708393790171494