Improving Oxidation Resistance of Carbon Nanotube Nanocomposites for Aerospace Applications

被引:0
作者
Inam, Fawad [1 ,2 ]
Vo, Thuc [1 ,2 ]
Kumara, Saman [3 ]
机构
[1] Glyndwr Univ, Adv Composite Training & Dev Ctr, Mold Rd, Wrexham LL11 2AW, Wales
[2] Glyndwr Univ, Sch Mech & Aeronaut Engn, Wrexham LL11 2AW, Wales
[3] Tokyo Inst Technol, Dept Mech & Aerosp Engn, Meguro Ku, Tokyo 1528550, Japan
来源
ACMTAA 2012: PROCEEDINGS OF THE SECOND INTERNATIONAL CONFERENCE ON ADVANCED COMPOSITE MATERIALS AND TECHNOLOGIES FOR AEROSPACE APPLICATIONS | 2012年
关键词
Carbon nanotubes; Ceramic nanocomposites; Oxidation resistance; FIELD-EFFECT TRANSISTORS; ATOMIC LAYER DEPOSITION; MECHANICAL-PROPERTIES; THERMAL-DEGRADATION; NITRIDE COMPOSITES; GATE DIELECTRICS; EMISSION; MICROSTRUCTURE; FABRICATION; MORPHOLOGY;
D O I
暂无
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
Carbon nanotubes (CNTs) based materials possess strong potential to substitute various functional materials developed exclusively for aerospace applications. However, because of the low oxidation temperature of CNTs (400-500 degrees C), using CNT based ceramic nanocomposites in high temperature applications can be problematic. Making ceramic-CNT nanocomposites by atomic layer deposition (ALD) method and field assisted sintering technology (FAST) is a good route to improve oxidative stability of CNTs. In this study, thermo-gravimetric analysis (TGA) of alumina coated CNTs (prepared by ALD) and alumina-CNT nanocomposites (prepared by FAST) were carried out. 16% improvements were observed in the oxidation resistance for alumina-CNT nanocomposites prepared by ALD and SPS techniques. Different strategies to improve oxidation resistance are discussed.
引用
收藏
页码:24 / 28
页数:5
相关论文
共 45 条
  • [1] Logic circuits with carbon nanotube transistors
    Bachtold, A
    Hadley, P
    Nakanishi, T
    Dekker, C
    [J]. SCIENCE, 2001, 294 (5545) : 1317 - 1320
  • [2] Processing of carbon nanotube reinforced silicon nitride composites by spark plasma sintering
    Balázsi, C
    Shen, Z
    Kónya, Z
    Kasztovszky, Z
    Wéber, F
    Vértesy, Z
    Biró, LP
    Kiricsi, I
    Arató, P
    [J]. COMPOSITES SCIENCE AND TECHNOLOGY, 2005, 65 (05) : 727 - 733
  • [3] Layered machinable ceramics for high temperature applications
    Barsoum, MW
    Brodkin, D
    ElRaghy, T
    [J]. SCRIPTA MATERIALIA, 1997, 36 (05) : 535 - 541
  • [4] Polyethylene thermal oxidative stabilisation in carbon nanotubes based nanocomposites
    Bocchini, Sergio
    Frache, Alberto
    Camino, Giovanni
    Claes, Michael
    [J]. EUROPEAN POLYMER JOURNAL, 2007, 43 (08) : 3222 - 3235
  • [5] Carbon nanotube/CdS core-shell nanowires prepared by a simple room-temperature chemical reduction method
    Cao, J
    Sun, JZ
    Hong, J
    Li, HY
    Chen, HZ
    Wang, M
    [J]. ADVANCED MATERIALS, 2004, 16 (01) : 84 - +
  • [6] Stable field emission property of patterned MgO coated carbon nanotube arrays
    Chakrabarti, Supriya
    Pan, Lujun
    Tanaka, Hiroyoshi
    Hokushin, Shogo
    Nakayama, Yoshikazu
    [J]. JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS BRIEF COMMUNICATIONS & REVIEW PAPERS, 2007, 46 (7A): : 4364 - 4369
  • [7] Chen C.M., 1998, DIAM RELAT MATER, V13, P1182
  • [8] The thermal degradation of poly(methyl methacrylate) nanocomposites with montmorillonite, layered double hydroxides and carbon nanotubes
    Costache, Marius C.
    Wang, Dongyan
    Heidecker, Matthew J.
    Manias, E.
    Wilkie, Charles A.
    [J]. POLYMERS FOR ADVANCED TECHNOLOGIES, 2006, 17 (04) : 272 - 280
  • [9] Alignment of carbon nanotube additives for improved performance of magnesium diboride superconductors
    Dou, SX
    Yeoh, WK
    Shcherbakova, O
    Wexler, D
    Li, Y
    Ren, ZM
    Munroe, P
    Chen, SK
    Tan, KS
    Glowacki, BA
    MacManus-Driscoll, JL
    [J]. ADVANCED MATERIALS, 2006, 18 (06) : 785 - +
  • [10] Atomic layer deposition on suspended single-walled carbon nanotubes via gas-phase noncovalent functionalization
    Farmer, DB
    Gordon, RG
    [J]. NANO LETTERS, 2006, 6 (04) : 699 - 703