NeuMF: Predicting Anti-cancer Drug Response Through a Neural Matrix Factorization Model

被引:4
作者
Liu, Hui [1 ,2 ]
Yu, Jian [2 ]
Chen, Xiangzhi [2 ]
Zhang, Lin [1 ,2 ]
机构
[1] China Univ Min & Technol, Engn Res Ctr Intelligent Control Underground Space, Minist Educ, Xuzhou 221116, Peoples R China
[2] China Univ Min & Technol, Sch Informat & Control Engn, Xuzhou 221116, Peoples R China
关键词
Neural matrix factorization; drug response prediction; neural networks; precision medicine; Genomics of Drug Sensitivity in Cancer (GDSC); Cancer Cell Line Encyclopedia (CCLE); KINASE INHIBITOR; CANCER; DISCOVERY; NETWORKS; PATHWAY; SENSITIVITY; COMPLETION; ANTITUMOR; GROWTH;
D O I
10.2174/1574893617666220609114052
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Background: Anti-cancer drug response is urgently required for individualized therapy. Measurements with wet experiments are costly and time-consuming. Artificial intelligence-based models are currently available for predicting drug response but still have challenges in prediction accuracy. Objective: Construct a model to predict drug response values for unknown cell lines and analyze drug potential association properties in sparse data. Methods: Propose a Neural Matrix Factorization (NeuMF) framework to help predict the unknown responses of cell lines to drugs. The model uses a deep neural network to figure out drug and cell lines' latent variables. In NeuMF, the inputs and the parameters of the multi-layer neural network are simultaneously optimized by gradient descent to minimize the reconstruction errors between the predicted and natural values of the observed entries. Then the unknown entries can be readily recovered by propagating the latent variables to the output layer. Results: Experiments on the Cancer Cell Line Encyclopedia (CCLE) dataset and Genomics of Drug Sensitivity in Cancer (GDSC) dataset compare NeuMF with the other three state-of-the-art methods. NeuMF reduces constructing drug or cell line similarity and mines the response matrix itself for correlations in the network, avoiding the inclusion of redundant noise. NeuMF obtained drug averaged PCC_sr of 0.83 and 0.84 on both datasets. It demonstrates that NeuMF substantially improves the prediction. Some essential parameters in NeuMF, such as the global effect removal strategy and the input layer scales, are also discussed. Finally, case studies have shown that NeuMF can better learn the latent characteristics of drugs, e.g., Irinotecan and Topotecan are found to act on the same pathway TOP1. The conclusions are in line with some existing biological findings. Conclusion: NeuMF achieves better prediction accuracy than existing models, and its output is biologically interpretable. NeuMF also helps analyze the correlations between drugs.
引用
收藏
页码:835 / 847
页数:13
相关论文
共 44 条
  • [1] Structure of the Ire1 autophosphorylation complex and implications for the unfolded protein response
    Ali, Maruf M. U.
    Bagratuni, Tina
    Davenport, Emma L.
    Nowak, Piotr R.
    Silva-Santisteban, M. Cris
    Hardcastle, Anthea
    McAndrews, Craig
    Rowlands, Martin G.
    Morgan, Gareth J.
    Aherne, Wynne
    Collins, Ian
    Davies, Faith E.
    Pearl, Laurence H.
    [J]. EMBO JOURNAL, 2011, 30 (05) : 894 - 905
  • [2] Integrative and Personalized QSAR Analysis in Cancer by Kernelized Bayesian Matrix Factorization
    Amnnad-ud-din, Muhammad
    Georgii, Elisabeth
    Gonen, Mehmet
    Laitinen, Tuomo
    Kallioniemi, Olli
    Wennerberg, Krister
    Poso, Antti
    Kaski, Samuel
    [J]. JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2014, 54 (08) : 2347 - 2359
  • [3] [Anonymous], 2000, P 2 INT ICSC S NEUR
  • [4] NEURAL NETWORKS AND PRINCIPAL COMPONENT ANALYSIS - LEARNING FROM EXAMPLES WITHOUT LOCAL MINIMA
    BALDI, P
    HORNIK, K
    [J]. NEURAL NETWORKS, 1989, 2 (01) : 53 - 58
  • [5] The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity
    Barretina, Jordi
    Caponigro, Giordano
    Stransky, Nicolas
    Venkatesan, Kavitha
    Margolin, Adam A.
    Kim, Sungjoon
    Wilson, Christopher J.
    Lehar, Joseph
    Kryukov, Gregory V.
    Sonkin, Dmitriy
    Reddy, Anupama
    Liu, Manway
    Murray, Lauren
    Berger, Michael F.
    Monahan, John E.
    Morais, Paula
    Meltzer, Jodi
    Korejwa, Adam
    Jane-Valbuena, Judit
    Mapa, Felipa A.
    Thibault, Joseph
    Bric-Furlong, Eva
    Raman, Pichai
    Shipway, Aaron
    Engels, Ingo H.
    Cheng, Jill
    Yu, Guoying K.
    Yu, Jianjun
    Aspesi, Peter, Jr.
    de Silva, Melanie
    Jagtap, Kalpana
    Jones, Michael D.
    Wang, Li
    Hatton, Charles
    Palescandolo, Emanuele
    Gupta, Supriya
    Mahan, Scott
    Sougnez, Carrie
    Onofrio, Robert C.
    Liefeld, Ted
    MacConaill, Laura
    Winckler, Wendy
    Reich, Michael
    Li, Nanxin
    Mesirov, Jill P.
    Gabriel, Stacey B.
    Getz, Gad
    Ardlie, Kristin
    Chan, Vivien
    Myer, Vic E.
    [J]. NATURE, 2012, 483 (7391) : 603 - 607
  • [6] The discovery of the benzhydroxamate MEK inhibitors CI-1040 and PD 0325901
    Barrett, Stephen D.
    Bridges, Alexander J.
    Dudley, David T.
    Saltiel, Alan R.
    Fergus, James H.
    Flamme, Cathlin M.
    Delaney, Amy M.
    Kaufman, Michael
    LePage, Sophie
    Leopold, Wilbur R.
    Przybranowski, Sally A.
    Sebolt-Leopold, Judith
    Van Becelaere, Keri
    Doherty, Annette M.
    Kennedy, Robert M.
    Marston, Dan
    Howard, W. Allen, Jr.
    Smith, Yvonne
    Warmus, Joseph S.
    Tecle, Haile
    [J]. BIOORGANIC & MEDICINAL CHEMISTRY LETTERS, 2008, 18 (24) : 6501 - 6504
  • [7] Cancer - Gene expression in diagnosis
    Berns, A
    [J]. NATURE, 2000, 403 (6769) : 491 - 492
  • [8] Cross-validation methods
    Browne, MW
    [J]. JOURNAL OF MATHEMATICAL PSYCHOLOGY, 2000, 44 (01) : 108 - 132
  • [9] A new mutational aktivation in the PI3K pathway
    Brugge, Joan
    Hung, Mien-Chie
    Mills, Gordon B.
    [J]. CANCER CELL, 2007, 12 (02) : 104 - 107
  • [10] Calin O, 2020, SPRINGER SER DATA SC, P21, DOI 10.1007/978-3-030-36721-3_2