Custom-Size, Functional, and Durable DNA Origami with Design-Specific Scaffolds

被引:97
作者
Engelhardt, Floris A. S. [1 ]
Praetorius, Florian [1 ]
Wachauf, Christian H. [1 ]
Brueggenthies, Gereon [1 ]
Kohler, Fabian [1 ]
Kick, Benjamin [1 ]
Kadletz, Karoline L. [1 ]
Phuong Nhi Pham [1 ]
Behler, Karl L. [2 ]
Gerling, Thomas [1 ]
Dietz, Hendrik [1 ]
机构
[1] Tech Univ Munich, Phys Dept, Coulombwall 4a, D-85748 Garching, Germany
[2] Tech Univ Munich, Lehrstuhl Bioverfahrenstech, Coulombwall 4a, D-85748 Garching, Germany
基金
欧洲研究理事会;
关键词
nanostructures; DNA origami; DNA nanotechnology; self-assembly; phagemid; NANOSCALE SHAPES; FOLDING DNA; NANOSTRUCTURES; PROTEIN;
D O I
10.1021/acsnano.9b01025
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
DNA origami nano-objects are usually designed around generic single-stranded "scaffolds". Many properties of the target object are determined by details of those generic scaffold sequences. Here, we enable designers to fully specify the target structure not only in terms of desired 3D shape but also in terms of the sequences used. To this end, we built design tools to construct scaffold sequences de novo based on strand diagrams, and we developed scalable production methods for creating design-specific scaffold strands with fully user-defined sequences. We used 17 custom scaffolds having different lengths and sequence properties to study the influence of sequence redundancy and sequence composition on multilayer DNA origami assembly and to realize efficient one-pot assembly of multiscaffold DNA origami objects. Furthermore, as examples for functionalized scaffolds, we created a scaffold that enables direct, covalent cross-linking of DNA origami via UV irradiation, and we built DNAzyme-containing scaffolds that allow postfolding DNA origami domain separation.
引用
收藏
页码:5015 / 5027
页数:13
相关论文
共 66 条
[1]   Cryo-EM structure of a 3D DNA-origami object [J].
Bai, Xiao-chen ;
Martin, Thomas G. ;
Scheres, Sjors H. W. ;
Dietz, Hendrik .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2012, 109 (49) :20012-20017
[2]  
Bell NAW, 2016, NAT NANOTECHNOL, V11, P645, DOI [10.1038/NNANO.2016.50, 10.1038/nnano.2016.50]
[3]   DNA nanotubes for NMR structure determination of membrane proteins [J].
Bellot, Gaetan ;
McClintock, Mark A. ;
Chou, James J. ;
Shih, William M. .
NATURE PROTOCOLS, 2013, 8 (04) :755-770
[4]   DNA rendering of polyhedral meshes at the nanoscale [J].
Benson, Erik ;
Mohammed, Abdulmelik ;
Gardell, Johan ;
Masich, Sergej ;
Czeizler, Eugen ;
Orponen, Pekka ;
Hogberg, Bjorn .
NATURE, 2015, 523 (7561) :441-U139
[5]   Mitochondrial uncoupling protein 2 structure determined by NMR molecular fragment searching [J].
Berardi, Marcelo J. ;
Shih, William M. ;
Harrison, Stephen C. ;
Chou, James J. .
NATURE, 2011, 476 (7358) :109-113
[6]   An easy-to-prepare mini-scaffold for DNA origami [J].
Brown, S. ;
Majikes, J. ;
Martinez, A. ;
Giron, T. M. ;
Fennell, H. ;
Samano, E. C. ;
LaBean, T. H. .
NANOSCALE, 2015, 7 (40) :16621-16624
[7]   Time-Resolved Small-Angle X-ray Scattering Reveals Millisecond Transitions of a DNA Origami Switch [J].
Bruetzel, Linda K. ;
Walker, Philipp U. ;
Gerling, Thomas ;
Dietz, Hendrik ;
Lipfert, Jan .
NANO LETTERS, 2018, 18 (04) :2672-2676
[8]  
Bruijn De, 1946, KONINKLIJKE NEDERLAN, V49, P758
[9]   A primer to scaffolded DNA origami [J].
Castro, Carlos Ernesto ;
Kilchherr, Fabian ;
Kim, Do-Nyun ;
Shiao, Enrique Lin ;
Wauer, Tobias ;
Wortmann, Philipp ;
Bathe, Mark ;
Dietz, Hendrik .
NATURE METHODS, 2011, 8 (03) :221-229
[10]   Eliminating helper phage from phage display [J].
Chasteen, L. ;
Ayriss, J. ;
Pavlik, P. ;
Bradbury, A. R. M. .
NUCLEIC ACIDS RESEARCH, 2006, 34 (21)