Approximate Controllability of a 3D Nonlinear Stochastic Wave Equation

被引:0
作者
Gao, Peng [1 ]
机构
[1] Jilin Univ, Inst Math, Changchun 130012, Peoples R China
关键词
EXACT BOUNDARY CONTROLLABILITY; WEAK ASYMPTOTIC DECAY; MAXWELLS EQUATIONS; STABILIZATION; EXISTENCE; SYSTEMS;
D O I
10.1155/2014/524860
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the well-posedness of a 3D nonlinear stochastic wave equation which derives from the Maxwell system by the Galerkin method. Then we study the approximate controllability of this system by the Hilbert uniqueness method.
引用
收藏
页数:7
相关论文
共 18 条
[1]  
[Anonymous], 1990, MATH ANAL NUMERICAL
[2]   Well-posedness and exponential stability of Maxwell-like systems coupled with strongly absorbing layers [J].
Barucq, Helene ;
Fontes, Mathieu .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2007, 87 (03) :253-273
[3]  
Cessenat M., 1996, series on Adv. Math. Appl. Sci., V41
[4]   On the approximate controllability of the stochastic Maxwell equations [J].
Horsin, T. ;
Stratis, I. G. ;
Yannacopoulos, A. N. .
IMA JOURNAL OF MATHEMATICAL CONTROL AND INFORMATION, 2010, 27 (01) :103-118
[5]   STABILIZATION AND EXACT BOUNDARY CONTROLLABILITY FOR MAXWELL EQUATIONS [J].
KAPITONOV, BV .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1994, 32 (02) :408-420
[6]  
Karatzas I., 1997, BROWNIAN MOTION STOC, V2nd
[7]   Approximate controllability of a stochastic wave equation [J].
Kim, JU .
APPLIED MATHEMATICS AND OPTIMIZATION, 2004, 49 (01) :81-98
[8]  
LAGNESE J.E, OPTIMAL CONTROL PART, V149, DOI [10.1007/BFb0043222, DOI 10.1007/BFB0043222]
[10]   EXACT CONTROLLABILITY, STABILIZATION AND PERTURBATIONS FOR DISTRIBUTED SYSTEMS [J].
LIONS, JL .
SIAM REVIEW, 1988, 30 (01) :1-68