Vertex-connectivity, chromatic number, domination number, maximum degree and Laplacian eigenvalue distribution

被引:6
|
作者
Wang, Long [1 ]
Yan, Chunyu [1 ]
Fang, Xianwen [1 ]
Geng, Xianya [1 ]
Tian, Fenglei [2 ]
机构
[1] Anhui Univ Sci & Technol, Sch Math & Big Data, Huainan, Peoples R China
[2] Qufu Normal Univ, Sch Management, Rizhao, Peoples R China
基金
中国国家自然科学基金;
关键词
Distribution of Laplacian eigenvalue; Vertex-connectivity; Chromatic number; Domination number; Maximum degree; GRAPHS; SPECTRUM;
D O I
10.1016/j.laa.2020.08.011
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let Gbe a connected graph of order nand m(G)(I) be the number of Laplacian eigenvalues of Gin an interval I. If I= {lambda} for a real number lambda, then m(G)(lambda) is just the multiplicity of lambda as a Laplacian eigenvalue of G. It is well known that the Laplacian eigenvalues of Gare all in the interval [0, n]. A lot of attention has been paid to the distribution of Laplacian eigenvalues in the smallest subinterval [0, 1) of length 1in [0, n]. Particularly, Hedetniemi etal. (2016) [14] proved that mG[0, 1) =.if Ghas domination number lambda. We are interested in another extreme problem: The distribution of Laplacian eigenvalues in the largest subinterval (n - 1, n] of length 1. In this article, we prove that m(G)(n -1, n] = lambda and m(G)(n-1, n] = gamma - 1, where lambda and lambda are respectively the vertex-connectivity and the chromatic number of G. Two other main results of this paper focus on mG(lambda), the multiplicity of an arbitrary Laplacian eigenvalue.of G. It is proved that m(G)(lambda) = n - m(G)(lambda) = <= Delta/Delta+ 1 and for a connected graph Gwith domination number lambda and maximum degree Delta. (C) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页码:307 / 318
页数:12
相关论文
共 50 条
  • [21] The least eigenvalue of signless Laplacian of non-bipartite graphs with given domination number
    Fan, Yi-Zheng
    Tan, Ying-Ying
    DISCRETE MATHEMATICS, 2014, 334 : 20 - 25
  • [22] A Characterization of Graphs with Equal Domination Number and Vertex Cover Number
    Wu, Yunjian
    Yu, Qinglin
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2012, 35 (03) : 803 - 806
  • [23] Normalized Laplacian eigenvalues with chromatic number and independence number of graphs
    Sun, Shaowei
    Das, Kinkar Ch
    LINEAR & MULTILINEAR ALGEBRA, 2020, 68 (01) : 63 - 80
  • [24] CHROMATIC NUMBER AND SOME MULTIPLICATIVE VERTEX-DEGREE-BASED INDICES OF GRAPHS
    Xu, Kexiang
    Tang, Kechao
    Das, Kinkar Ch.
    Yue, Huansong
    KRAGUJEVAC JOURNAL OF MATHEMATICS, 2012, 36 (02): : 323 - 333
  • [25] The entire chromatic number of graphs embedded on the torus with large maximum degree
    Hu, Xiaoxue
    Wang, Ping
    Wang, Yiqiao
    Wang, Weifan
    THEORETICAL COMPUTER SCIENCE, 2017, 689 : 108 - 116
  • [26] The least Q-eigenvalue with fixed domination number
    Yu, Guanglong
    Zhai, Mingqing
    Yan, Chao
    Guo, Shu-guang
    APPLIED MATHEMATICS AND COMPUTATION, 2018, 339 : 477 - 487
  • [27] DISTANCE LAPLACIAN EIGENVALUES OF GRAPHS, AND CHROMATIC AND INDEPENDENCE NUMBER
    Pirzada, Shariefuddin
    Khan, Saleem
    REVISTA DE LA UNION MATEMATICA ARGENTINA, 2024, 67 (01): : 145 - 159
  • [28] The least eigenvalue of a graph with a given domination number
    Zhu, Bao-Xuan
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2012, 437 (11) : 2713 - 2718
  • [29] LAPLACIAN EIGENVALUES OF GRAPHS WITH GIVEN DOMINATION NUMBER
    Feng, Lihua
    Yu, Guihai
    Lin, Xiqin
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2009, 2 (01) : 71 - 76
  • [30] RADIUS, LEAF NUMBER, CONNECTED DOMINATION NUMBER AND MINIMUM DEGREE
    Mafuta, P.
    Mukwembi, S.
    Munyira, S.
    QUAESTIONES MATHEMATICAE, 2023, 46 (05) : 1009 - 1016