Vertex-connectivity, chromatic number, domination number, maximum degree and Laplacian eigenvalue distribution

被引:7
作者
Wang, Long [1 ]
Yan, Chunyu [1 ]
Fang, Xianwen [1 ]
Geng, Xianya [1 ]
Tian, Fenglei [2 ]
机构
[1] Anhui Univ Sci & Technol, Sch Math & Big Data, Huainan, Peoples R China
[2] Qufu Normal Univ, Sch Management, Rizhao, Peoples R China
基金
中国国家自然科学基金;
关键词
Distribution of Laplacian eigenvalue; Vertex-connectivity; Chromatic number; Domination number; Maximum degree; GRAPHS; SPECTRUM;
D O I
10.1016/j.laa.2020.08.011
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let Gbe a connected graph of order nand m(G)(I) be the number of Laplacian eigenvalues of Gin an interval I. If I= {lambda} for a real number lambda, then m(G)(lambda) is just the multiplicity of lambda as a Laplacian eigenvalue of G. It is well known that the Laplacian eigenvalues of Gare all in the interval [0, n]. A lot of attention has been paid to the distribution of Laplacian eigenvalues in the smallest subinterval [0, 1) of length 1in [0, n]. Particularly, Hedetniemi etal. (2016) [14] proved that mG[0, 1) =.if Ghas domination number lambda. We are interested in another extreme problem: The distribution of Laplacian eigenvalues in the largest subinterval (n - 1, n] of length 1. In this article, we prove that m(G)(n -1, n] = lambda and m(G)(n-1, n] = gamma - 1, where lambda and lambda are respectively the vertex-connectivity and the chromatic number of G. Two other main results of this paper focus on mG(lambda), the multiplicity of an arbitrary Laplacian eigenvalue.of G. It is proved that m(G)(lambda) = n - m(G)(lambda) = <= Delta/Delta+ 1 and for a connected graph Gwith domination number lambda and maximum degree Delta. (C) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页码:307 / 318
页数:12
相关论文
共 20 条
[11]   THE LAPLACIAN SPECTRUM OF A GRAPH .2. [J].
GRONE, R ;
MERRIS, R .
SIAM JOURNAL ON DISCRETE MATHEMATICS, 1994, 7 (02) :221-229
[12]   The kth Laplacian eigenvalue of a tree [J].
Guo, Ji-Ming .
JOURNAL OF GRAPH THEORY, 2007, 54 (01) :51-57
[13]   Domination number and Laplacian eigenvalue distribution [J].
Hedetniemi, Stephen T. ;
Jacobs, David P. ;
Trevisan, Vilmar .
EUROPEAN JOURNAL OF COMBINATORICS, 2016, 53 :66-71
[14]  
Merris R., 1991, Port Math, V48, P345
[15]   A relation between the matching number and Laplacian spectrum of a graph [J].
Ming, GJ ;
Wang, TS .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2001, 325 (1-3) :71-74
[16]   Bounds on graph eigenvalues I [J].
Nikiforov, Vladimir .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2007, 420 (2-3) :667-671
[17]   On bipartite graphs with small number of Laplacian eigenvalues greater than two and three [J].
Petrovic, M ;
Gutman, I ;
Lepovic, M ;
Milekic, B .
LINEAR & MULTILINEAR ALGEBRA, 2000, 47 (03) :205-215
[18]  
WILF HS, 1967, J LONDON MATH SOC, V42, P330
[19]   Graphs with fourth Laplacian eigenvalue less than two [J].
Zhang, XD .
EUROPEAN JOURNAL OF COMBINATORICS, 2003, 24 (06) :617-630
[20]  
Zhang XD., 2002, Australas J Combin, V26, P33