Vertex-connectivity, chromatic number, domination number, maximum degree and Laplacian eigenvalue distribution

被引:7
作者
Wang, Long [1 ]
Yan, Chunyu [1 ]
Fang, Xianwen [1 ]
Geng, Xianya [1 ]
Tian, Fenglei [2 ]
机构
[1] Anhui Univ Sci & Technol, Sch Math & Big Data, Huainan, Peoples R China
[2] Qufu Normal Univ, Sch Management, Rizhao, Peoples R China
基金
中国国家自然科学基金;
关键词
Distribution of Laplacian eigenvalue; Vertex-connectivity; Chromatic number; Domination number; Maximum degree; GRAPHS; SPECTRUM;
D O I
10.1016/j.laa.2020.08.011
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let Gbe a connected graph of order nand m(G)(I) be the number of Laplacian eigenvalues of Gin an interval I. If I= {lambda} for a real number lambda, then m(G)(lambda) is just the multiplicity of lambda as a Laplacian eigenvalue of G. It is well known that the Laplacian eigenvalues of Gare all in the interval [0, n]. A lot of attention has been paid to the distribution of Laplacian eigenvalues in the smallest subinterval [0, 1) of length 1in [0, n]. Particularly, Hedetniemi etal. (2016) [14] proved that mG[0, 1) =.if Ghas domination number lambda. We are interested in another extreme problem: The distribution of Laplacian eigenvalues in the largest subinterval (n - 1, n] of length 1. In this article, we prove that m(G)(n -1, n] = lambda and m(G)(n-1, n] = gamma - 1, where lambda and lambda are respectively the vertex-connectivity and the chromatic number of G. Two other main results of this paper focus on mG(lambda), the multiplicity of an arbitrary Laplacian eigenvalue.of G. It is proved that m(G)(lambda) = n - m(G)(lambda) = <= Delta/Delta+ 1 and for a connected graph Gwith domination number lambda and maximum degree Delta. (C) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页码:307 / 318
页数:12
相关论文
共 20 条
[1]  
[Anonymous], 1985, Linear Multilinear Algebra
[2]   GRAPH-THEORETIC PARAMETERS CONCERNING DOMINATION, INDEPENDENCE, AND IRREDUNDANCE [J].
BOLLOBAS, B ;
COCKAYNE, EJ .
JOURNAL OF GRAPH THEORY, 1979, 3 (03) :241-249
[3]   On the distribution of Laplacian eigenvalues of trees [J].
Braga, Rodrigo O. ;
Rodrigues, Virginia M. ;
Trevisan, Vilmar .
DISCRETE MATHEMATICS, 2013, 313 (21) :2382-2389
[4]   Sharp lower bounds on the Laplacian eigenvalues of trees [J].
Das, KC .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2004, 384 :155-169
[5]   Nonsingular mixed graphs with few eigenvalues greater than two [J].
Fan, Yi-Zheng ;
Gong, Shi-Cai ;
Zhou, Jun ;
Tan, Ying-Ying ;
Wang, Yi .
EUROPEAN JOURNAL OF COMBINATORICS, 2007, 28 (06) :1694-1702
[6]   PERMANENTAL ROOTS AND THE STAR DEGREE OF A GRAPH [J].
FARIA, I .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1985, 64 (JAN) :255-265
[7]   SOME EIGENVALUE PROPERTIES IN GRAPHS (CONJECTURES OF GRAFFITI .2.) [J].
FAVARON, O ;
MAHEO, M ;
SACLE, JF .
DISCRETE MATHEMATICS, 1993, 111 (1-3) :197-220
[8]  
FIEDLER M, 1973, CZECH MATH J, V23, P298
[9]  
Garey M. R., 1979, Computers and intractability. A guide to the theory of NP-completeness
[10]   THE LAPLACIAN SPECTRUM OF A GRAPH [J].
GRONE, R ;
MERRIS, R ;
SUNDER, VS .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1990, 11 (02) :218-238