DEEP SELF-TAUGHT GRAPH EMBEDDING HASHING WITH PSEUDO LABELS FOR IMAGE RETRIEVAL

被引:4
|
作者
Liu, Yu [1 ]
Wang, Yangtao [1 ]
Song, Jingkuan [2 ]
Guo, Chan [1 ]
Zhou, Ke [1 ]
Xiao, Zhili [3 ]
机构
[1] Huazhong Univ Sci & Technol, Wuhan, Peoples R China
[2] Univ Elect Sci & Technol China, Chengdu, Peoples R China
[3] Tencent, Shenzhen, Peoples R China
来源
2020 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO (ICME) | 2020年
基金
中国国家自然科学基金;
关键词
Deep hashing; graph embedding; second-order proximity; image retrieval;
D O I
10.1109/icme46284.2020.9102819
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
It has always been a tricky task to generate image hashing function via deep learning without labels and allocate the relative distance between data through their features. Existing methods can complete this task and prevent the overfitting problem using shallow graph embedding technique. However, they only capture the first-order proximity. To address this problem, we design DSTGeH, a deep self-taught graph embedding hashing framework which learns hash function without labels for image retrieval. DSTGeH introduces deep graph embedding means to capture more complex topological relationships (the second-order proximity) on the graph and maps these relationships into pseudo labels, which enables an end-to-end hash model and helps recognize the samples outside the graph. We present the ablation studies and compare DSTGeH with the state-of-the-art label-free hashing algorithms. Extensive experiments show DSTGeH can achieve the best performances and produce an overwhelming advantage on multi-object datasets.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] Piecewise supervised deep hashing for image retrieval
    Yannuan Li
    Lin Wan
    Ting Fu
    Weijun Hu
    Multimedia Tools and Applications, 2019, 78 : 24431 - 24451
  • [42] Multiple Spaces Deep Hashing for Image Retrieval
    Wang, Xianyang
    Guo, Qingbei
    Zhao, Xiuyang
    2020 12TH INTERNATIONAL CONFERENCE ON ADVANCED COMPUTATIONAL INTELLIGENCE (ICACI), 2020, : 397 - 401
  • [43] Unsupervised Deep Triplet Hashing for Image Retrieval
    Meng, Lingtao
    Zhang, Qiuyu
    Yang, Rui
    Huang, Yibo
    IEEE SIGNAL PROCESSING LETTERS, 2024, 31 : 1489 - 1493
  • [44] Piecewise supervised deep hashing for image retrieval
    Li, Yannuan
    Wan, Lin
    Fu, Ting
    Hu, Weijun
    MULTIMEDIA TOOLS AND APPLICATIONS, 2019, 78 (17) : 24431 - 24451
  • [45] Deep Supervised Hashing for Fast Image Retrieval
    Haomiao Liu
    Ruiping Wang
    Shiguang Shan
    Xilin Chen
    International Journal of Computer Vision, 2019, 127 : 1217 - 1234
  • [46] Robust Deep Supervised Hashing for Image Retrieval
    Mo, Zhaoguo
    Zhu, Yuesheng
    Zhan, Jiawei
    TWELFTH INTERNATIONAL CONFERENCE ON DIGITAL IMAGE PROCESSING (ICDIP 2020), 2020, 11519
  • [47] Supervised graph hashing for histopathology image retrieval and classification
    Shi, Xiaoshuang
    Xing, Fuyong
    Xu, KaiDi
    Xie, Yuanpu
    Su, Hai
    Yang, Lin
    MEDICAL IMAGE ANALYSIS, 2017, 42 : 117 - 128
  • [48] Inductive Transfer Deep Hashing for Image Retrieval
    Ou, Xinyu
    Yan, Lingyu
    Ling, Hefei
    Liu, Cong
    Liu, Maolin
    PROCEEDINGS OF THE 2014 ACM CONFERENCE ON MULTIMEDIA (MM'14), 2014, : 969 - 972
  • [49] Deep Graph-Based Multimodal Feature Embedding for Endomicroscopy Image Retrieval
    Gu, Yun
    Vyas, Khushi
    Shen, Mali
    Yang, Jie
    Yang, Guang-Zhong
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2021, 32 (02) : 481 - 492
  • [50] Angular Deep Supervised Hashing for Image Retrieval
    Zhou, Chang
    Po, Lai-Man
    Yuen, Wilson Y. F.
    Cheung, Kwok Wai
    Xu, Xuyuan
    Lau, Kin Wai
    Zhao, Yuzhi
    Liu, Mengyang
    Wong, Peter H. W.
    IEEE ACCESS, 2019, 7 : 127521 - 127532