DEEP SELF-TAUGHT GRAPH EMBEDDING HASHING WITH PSEUDO LABELS FOR IMAGE RETRIEVAL

被引:4
|
作者
Liu, Yu [1 ]
Wang, Yangtao [1 ]
Song, Jingkuan [2 ]
Guo, Chan [1 ]
Zhou, Ke [1 ]
Xiao, Zhili [3 ]
机构
[1] Huazhong Univ Sci & Technol, Wuhan, Peoples R China
[2] Univ Elect Sci & Technol China, Chengdu, Peoples R China
[3] Tencent, Shenzhen, Peoples R China
来源
2020 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO (ICME) | 2020年
基金
中国国家自然科学基金;
关键词
Deep hashing; graph embedding; second-order proximity; image retrieval;
D O I
10.1109/icme46284.2020.9102819
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
It has always been a tricky task to generate image hashing function via deep learning without labels and allocate the relative distance between data through their features. Existing methods can complete this task and prevent the overfitting problem using shallow graph embedding technique. However, they only capture the first-order proximity. To address this problem, we design DSTGeH, a deep self-taught graph embedding hashing framework which learns hash function without labels for image retrieval. DSTGeH introduces deep graph embedding means to capture more complex topological relationships (the second-order proximity) on the graph and maps these relationships into pseudo labels, which enables an end-to-end hash model and helps recognize the samples outside the graph. We present the ablation studies and compare DSTGeH with the state-of-the-art label-free hashing algorithms. Extensive experiments show DSTGeH can achieve the best performances and produce an overwhelming advantage on multi-object datasets.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Deep Self-Taught Hashing for Image Retrieval
    Liu, Yu
    Song, Jingkuan
    Zhou, Ke
    Yan, Lingyu
    Liu, Li
    Zou, Fuhao
    Shao, Ling
    IEEE TRANSACTIONS ON CYBERNETICS, 2019, 49 (06) : 2229 - 2241
  • [2] RETRACTION: Self-taught hashing using deep graph embedding for large-scale image retrieval (Retraction of Vol 29, art no 033014, 2020)
    Zhou, Ruiling
    Zhao, Jinguo
    He, Rui
    Zhang, Xinyu
    JOURNAL OF ELECTRONIC IMAGING, 2020, 29 (03)
  • [3] Unsupervised Deep Hashing With Pseudo Labels for Scalable Image Retrieval
    Zhang, Haofeng
    Liu, Li
    Long, Yang
    Shao, Ling
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2018, 27 (04) : 1626 - 1638
  • [4] Unsupervised Deep Hashing with Dynamic Pseudo-Multi-Labels for Image Retrieval
    Meng, Lingtao
    Zhang, Qiuyu
    Yang, Rui
    Huang, Yibo
    IEEE SIGNAL PROCESSING LETTERS, 2024, 31 : 909 - 913
  • [5] Deep collaborative graph hashing for discriminative image retrieval
    Zhang, Zheng
    Wang, Jianning
    Zhu, Lei
    Luo, Yadan
    Lu, Guangming
    PATTERN RECOGNITION, 2023, 139
  • [6] Deep Graph Laplacian Hashing for Image Retrieval
    Ge, Jiancong
    Liu, Xueliang
    Hong, Richang
    Shao, Jie
    Wang, Meng
    ADVANCES IN MULTIMEDIA INFORMATION PROCESSING - PCM 2017, PT I, 2018, 10735 : 3 - 13
  • [7] Deep Hamming Embedding Based Hashing for Image Retrieval
    Lin J.
    Liu H.
    Zheng Z.
    Moshi Shibie yu Rengong Zhineng/Pattern Recognition and Artificial Intelligence, 2020, 33 (06): : 542 - 550
  • [8] Hierarchical deep hashing for image retrieval
    Ge Song
    Xiaoyang Tan
    Frontiers of Computer Science, 2017, 11 : 253 - 265
  • [9] Deep Progressive Hashing for Image Retrieval
    Bai, Jiale
    Ni, Bingbing
    Wang, Minsi
    Li, Zefan
    Cheng, Shuo
    Yang, Xiaokang
    Hu, Chuanping
    Gao, Wen
    IEEE TRANSACTIONS ON MULTIMEDIA, 2019, 21 (12) : 3178 - 3193
  • [10] Deep Transfer Hashing for Image Retrieval
    Zhai, Hongjia
    Lai, Shenqi
    Jin, Hanyang
    Qian, Xueming
    Mei, Tao
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2021, 31 (02) : 742 - 753