Construction of the asymptotics of the solutions of the one-dimensional Schrodinger equation with rapidly oscillating potential

被引:13
作者
Nesterov, P. N. [1 ]
机构
[1] PG Deminov Yaroslavl State Univ, Yaroslavl, Russia
关键词
Schrodinger equation; averaging method; oscillating potential; Levinson's theorem;
D O I
10.1007/s11006-006-0132-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We obtain asymptotic formulas for the solutions of the one-dimensional Schrodinger equation -y" + q(x)y = 0 with oscillating potential q(x) = x(beta)P(x(1+alpha),) + cx(-2) as x -> +infinity. The real parameters alpha and beta satisfy the inequalities beta - alpha > -1, 2 alpha - beta > 0 and c is an arbitrary real constant. The real function P(x) is either periodic with period T, or a trigonometric polynomial. To construct the asymptotics, we apply the ideas of the averaging method and use Levinson's fundamental theorem.
引用
收藏
页码:233 / 243
页数:11
相关论文
共 8 条
[1]  
Bogolyubov N.N., 1974, ASYMPTOTIC METHODS T
[2]  
BURD VS, 1998, MAT ZAMETKI, V64, P658
[3]  
CODDINGTON EA, 1955, THEORY ORDINARY DIFF, pB1022
[4]  
Coddington N., 1955, THEORY ORDINARY DIFF
[5]  
Demidovich B P., 1967, LECT MATH THEORY STA
[6]  
ITS AR, 1979, PROBLEMS MATH PHYS, P30
[7]  
NESTEROV PN, 2005, UNPUB ASYMPTOTIC BEH
[8]  
Shtokalo I. Z., 1960, LINEAR DIFFERENTIAL