Lebesgue Constants for Some Interpolating L-Splines

被引:0
作者
Novikov, S. I. [1 ]
机构
[1] Russian Acad Sci, Krasovskii Inst Math & Mech, Ural Branch, Ekaterinburg 620990, Russia
关键词
interpolation; spline; Lebesgue constant;
D O I
10.1134/S008154381802013X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We find exact values for the uniform Lebesgue constants of interpolating L-splines that are bounded on the real axis, have equidistant knots, and correspond to the linear third-order differential operator L-3(D) = D(D-2 + alpha(2)) with constant real coefficients, where alpha > 0. We compare the obtained result with the Lebesgue constants of other L-splines.
引用
收藏
页码:136 / 144
页数:9
相关论文
共 50 条
[31]   The Lebesgue constants on projective spaces [J].
Kushpel, Alexander .
TURKISH JOURNAL OF MATHEMATICS, 2021, 45 (02) :856-863
[32]   Lebesgue constants for Leja points [J].
Taylor, Rodney ;
Totik, Vilmos .
IMA JOURNAL OF NUMERICAL ANALYSIS, 2010, 30 (02) :462-486
[33]   SHARP ERROR-BOUNDS FOR INTERPOLATING SPLINES IN TENSION [J].
MARUSIC, M ;
ROGINA, M .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1995, 61 (02) :205-223
[34]   Optimization of the parameters of surfaces by interpolating variational bicubic splines [J].
Kouibia, A. ;
Pasadas, M. .
MATHEMATICS AND COMPUTERS IN SIMULATION, 2014, 102 :76-89
[35]   On Favard Local Parabolic Interpolating Splines with Additional Knots [J].
V. T. Shevaldin .
Computational Mathematics and Mathematical Physics, 2023, 63 :1045-1051
[36]   On Favard Local Parabolic Interpolating Splines with Additional Knots [J].
Shevaldin, V. T. .
COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2023, 63 (06) :1045-1051
[37]   Explicit forms of interpolating cubic splines and data smoothing [J].
Torok, Csaba ;
Hudak, Juraj ;
Pristas, Viktor ;
Antoni, Lubomir .
APPLIED MATHEMATICS AND COMPUTATION, 2025, 500
[38]   HYPERBOLIC LEBESGUE CONSTANTS IN DIMENSION TWO [J].
Liflyand E. .
Journal of Mathematical Sciences, 2022, 266 (1) :4-25
[39]   Lebesgue constants for the weak greedy algorithm [J].
S. J. Dilworth ;
D. Kutzarova ;
T. Oikhberg .
Revista Matemática Complutense, 2015, 28 :393-409
[40]   Lebesgue constants for the weak greedy algorithm [J].
Dilworth, S. J. ;
Kutzarova, D. ;
Oikhberg, T. .
REVISTA MATEMATICA COMPLUTENSE, 2015, 28 (02) :393-409