Dense photometric stereo by expectation maximization

被引:0
作者
Wu, Tai-Pang [1 ]
Tang, Chi-Keung [1 ]
机构
[1] Hong Kong Univ Sci & Technol, Vis & Graph Grp, Hong Kong, Hong Kong, Peoples R China
来源
COMPUTER VISION - ECCV 2006, PT 4, PROCEEDINGS | 2006年 / 3954卷
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We formulate a robust method using Expectation Maximization (EM) to address the problem of dense photometric stereo. Previous approaches using Markov Random Fields (MRF) utilized a dense set of noisy photometric images for estimating an initial normal to encode the matching cost at each pixel, followed by normal refinement by considering the neighborhood of the pixel. In this paper, we argue that they had not fully utilized the inherent data redundancy in the dense set and that its full exploitation leads to considerable improvement. Using the same noisy and dense input, this paper contributes in learning relevant observations, recovering accurate normals and very good surface albedos, and inferring optimal parameters in an unifying EM framework that converges to an optimal solution and has no free user-supplied parameter to set. Experiments show that our EM approach for dense photometric stereo outperforms the previous approaches using the same input.
引用
收藏
页码:159 / 172
页数:14
相关论文
共 15 条
[1]  
Bilmes J., 1997, A gentle tutorial on the em algorithm and its application to parameter estimation for gaussian mixture and hidden markov models
[2]   OBTAINING 3-DIMENSIONAL SHAPE OF TEXTURED AND SPECULAR SURFACES USING 4-SOURCE PHOTOMETRY [J].
COLEMAN, EN ;
JAIN, R .
COMPUTER GRAPHICS AND IMAGE PROCESSING, 1982, 18 (04) :309-328
[3]  
DRBOHLAV O, 2001, ICCV01
[4]  
Hertzmann A, 2003, PROC CVPR IEEE, P533
[5]  
Horn B., 1978, MIT AI MEMO
[6]   Estimating the parameters of an illumination model using photometric stereo [J].
Kay, G ;
Caelli, T .
GRAPHICAL MODELS AND IMAGE PROCESSING, 1995, 57 (05) :365-388
[7]  
KOVESI P, 2005, ICCV05
[8]  
Lee K. M., 1992, Proceedings. 1992 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No.92CH3168-2), P479, DOI 10.1109/CVPR.1992.223147
[9]  
LIM J, 2005, ICCV05
[10]   DETERMINING SHAPE AND REFLECTANCE OF HYBRID SURFACES BY PHOTOMETRIC SAMPLING [J].
NAYAR, SK ;
IKEUCHI, K ;
KANADE, T .
IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, 1990, 6 (04) :418-431