On the Ergodic Theorem for Affine Actions on Hilbert Space

被引:1
作者
Chifan, Ionut [1 ,2 ]
Sinclair, Thomas [3 ]
机构
[1] Univ Iowa, Dept Math, Iowa City, IA 52242 USA
[2] IMAR, Bucharest, Romania
[3] Univ Calif Los Angeles, Dept Math, Los Angeles, CA 90095 USA
基金
美国国家科学基金会;
关键词
affine action; mean ergodic theorem; groups of polynomial growth; POLYNOMIAL-GROWTH; RANDOM-WALKS; COHOMOLOGY;
D O I
10.36045/bbms/1442364590
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The note establishes a new weak mean ergodic theorem (Theorem A) for 1-cocycles associated to weakly mixing representations of amenable groups.
引用
收藏
页码:429 / 446
页数:18
相关论文
共 50 条
[21]   The ergodic theorem for random walks on finite quantum groups [J].
McCarthy, J. P. .
COMMUNICATIONS IN ALGEBRA, 2021, 49 (09) :3850-3871
[22]   Bi-Exact Groups, Strongly Ergodic Actions and Group Measure Space Type III Factors with No Central Sequence [J].
Houdayer, Cyril ;
Isono, Yusuke .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2016, 348 (03) :991-1015
[23]   AFFINE ACTIONS AND THE YANG-BAXTER EQUATION [J].
Yang, Dilian .
ADVANCES IN OPERATOR THEORY, 2018, 3 (03) :710-730
[24]   Ergodic properties of boundary actions and the Nielsen-Schreier theory [J].
Grigorchuk, Rostislav ;
Kaimanovich, Vadim A. ;
Nagnibeda, Tatiana .
ADVANCES IN MATHEMATICS, 2012, 230 (03) :1340-1380
[25]   VECTOR INTEGRALS AND A POINTWISE MEAN ERGODIC THEOREM FOR TRANSITION FUNCTIONS [J].
Zaharopol, Radu .
REVUE ROUMAINE DE MATHEMATIQUES PURES ET APPLIQUEES, 2008, 53 (01) :63-78
[26]   An ergodic theorem of a parabolic Anderson model driven by L,vy noise [J].
Liu, Yong ;
Wu, Jianglun ;
Yang, Fengxia ;
Zhai, Jianliang .
FRONTIERS OF MATHEMATICS IN CHINA, 2011, 6 (06) :1147-1183
[27]   RANDOM AVERAGING IN ERGODIC THEOREM AND BOUNDARY DEFORMATION RATE IN SYMBOLIC DYNAMICS [J].
Gurevich, B. M. ;
Komech, S. A. ;
Tempelman, A. A. .
MOSCOW MATHEMATICAL JOURNAL, 2019, 19 (01) :77-88
[28]   AFFINE BRAID GROUP ACTIONS ON DERIVED CATEGORIES OF SPRINGER RESOLUTIONS [J].
Bezrukavnikov, Roman ;
Riche, Simon .
ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 2012, 45 (04) :535-599
[29]   MEAN ERGODIC THEOREM FOR AMENABLE DISCRETE QUANTUM GROUPS AND A WIENER-TYPE THEOREM FOR COMPACT METRIZABLE GROUPS [J].
Huang, Huichi .
ANALYSIS & PDE, 2016, 9 (04) :893-906
[30]   A mean ergodic theorem for nonlinear semigroups which are asymptotically nonexpansive in the intermediate sense [J].
Kaczor, W ;
Kuczumow, T ;
Reich, S .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2000, 246 (01) :1-27