QUASISYMMETRIC GEOMETRY OF THE CANTOR CIRCLES AS THE JULIA SETS OF RATIONAL MAPS

被引:5
作者
Qiu, Weiyuan [1 ]
Yang, Fei [2 ]
Yin, Yongcheng [3 ]
机构
[1] Fudan Univ, Sch Math Sci, Shanghai 200433, Peoples R China
[2] Nanjing Univ, Dept Math, Nanjing 210093, Jiangsu, Peoples R China
[3] Zhejiang Univ, Dept Math, Hangzhou 310027, Zhejiang, Peoples R China
基金
新加坡国家研究基金会;
关键词
Julia sets; Cantor circles; quasisymmetrically equivalent; DYNAMICS;
D O I
10.3934/dcds.2016.36.3375
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We give three families of parabolic rational maps and show that every Cantor set of circles as the Julia set of a non-hyperbolic rational map must be quasisymmetrically equivalent to the Julia set of one map in these families for suitable parameters. Combining a result obtained before, we give a complete classification of the Cantor circles Julia sets in the sense of quasisymmetric equivalence. Moreover, we study the regularity of the components of the Cantor circles Julia sets and establish a sufficient and necessary condition when a component of a Cantor circles Julia set is a quasicircle.
引用
收藏
页码:3375 / 3416
页数:42
相关论文
共 22 条
[1]  
[Anonymous], 1973, QUASICONFORMAL MAPPI, DOI DOI 10.1007/978-3-642-65513-5
[2]  
[Anonymous], 1991, GRADUATE TEXTS MATH
[3]  
Bonk M., ARXIV14030392
[4]   Uniformization of SierpiA"ski carpets in the plane [J].
Bonk, Mario .
INVENTIONES MATHEMATICAE, 2011, 186 (03) :559-665
[5]  
Bourdon M, 1997, GEOM FUNCT ANAL, V7, P245, DOI 10.1007/PL00001619
[6]  
Bourdon M, 2002, RIGIDITY IN DYNAMICS AND GEOMETRY, P1
[7]  
Cui G., 2002, DYNAMICS RATIONAL MA
[8]   The escape trichotomy for singularly perturbed rational maps [J].
Devaney, RL ;
Look, DM ;
Uminsky, D .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2005, 54 (06) :1621-1634
[9]  
DOUADY A, 1985, ANN SCI ECOLE NORM S, V18, P287
[10]  
Gromov M. L., 1987, Essays in group theory, V8, P75, DOI 10.1007/978-1-4613-9586-7_3