A ultrasound-based radiomic approach to predict the nodal status in clinically negative breast cancer patients

被引:22
作者
Bove, Samantha [1 ]
Comes, Maria Colomba [1 ]
Lorusso, Vito [2 ]
Cristofaro, Cristian [1 ]
Didonna, Vittorio [1 ]
Gatta, Gianluca [3 ]
Giotta, Francesco [2 ]
La Forgia, Daniele [4 ]
Latorre, Agnese [2 ]
Pastena, Maria Irene [5 ]
Petruzzellis, Nicole [1 ]
Pomarico, Domenico [1 ]
Rinaldi, Lucia [6 ]
Tamborra, Pasquale [1 ]
Zito, Alfredo [5 ]
Fanizzi, Annarita [1 ]
Massafra, Raffaella [1 ]
机构
[1] IRCCS Ist Tumori Giovanni Paolo II, Struttura Semplice Dipartimentale Fis Sanitaria, Viale Orazio Flacco 65, I-70124 Bari, Italy
[2] IRCCS Ist Tumori Giovanni Paolo II, Unita Operat Complessa Oncol Med, Viale Orazio Flacco 65, I-70124 Bari, Italy
[3] Univ Campania Luigi Vanvitelli, Dipartimento Med Precis, I-80131 Naples, Italy
[4] IRCCS Ist Tumori Giovanni Paolo II, Struttura Semplice Dipartimentale Radiol Senol, Viale Orazio Flacco 65, I-70124 Bari, Italy
[5] IRCCS Ist Tumori Giovanni Paolo II, Unita Operat Complessa Anat Patol, Viale Orazio Flacco 65, I-70124 Bari, Italy
[6] IRCCS Ist Tumori Giovanni Paolo II, Struttura Semplice Dipartimentale Oncol Presa Car, Viale Orazio Flacco 65, I-70124 Bari, Italy
关键词
PREOPERATIVE PREDICTION; METASTASIS; PROGRESSION;
D O I
10.1038/s41598-022-11876-4
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In breast cancer patients, an accurate detection of the axillary lymph node metastasis status is essential for reducing distant metastasis occurrence probabilities. In case of patients resulted negative at both clinical and instrumental examination, the nodal status is commonly evaluated performing the sentinel lymph-node biopsy, that is a time-consuming and expensive intraoperative procedure for the sentinel lymph-node (SLN) status assessment. The aim of this study was to predict the nodal status of 142 clinically negative breast cancer patients by means of both clinical and radiomic features extracted from primary breast tumor ultrasound images acquired at diagnosis. First, different regions of interest (ROIs) were segmented and a radiomic analysis was performed on each ROI. Then, clinical and radiomic features were evaluated separately developing two different machine learning models based on an SVM classifier. Finally, their predictive power was estimated jointly implementing a soft voting technique. The experimental results showed that the model obtained by combining clinical and radiomic features provided the best performances, achieving an AUC value of 88.6%, an accuracy of 82.1%, a sensitivity of 100% and a specificity of 78.2%. The proposed model represents a promising non-invasive procedure for the SLN status prediction in clinically negative patients.
引用
收藏
页数:10
相关论文
共 42 条
  • [1] Hippocampal unified multi-atlas network (HUMAN): protocol and scale validation of a novel segmentation tool
    Amoroso, N.
    Errico, R.
    Bruno, S.
    Chincarini, A.
    Garuccio, E.
    Sensi, F.
    Tangaro, S.
    Tateo, A.
    Bellotti, R.
    [J]. PHYSICS IN MEDICINE AND BIOLOGY, 2015, 60 (22) : 8851 - 8867
  • [2] Bailur Abhijith, 2021, NEIGHBORHOOD GRAY TO
  • [3] Bornemann F., FAST IMAGE INPAINTIN
  • [4] Cawley, PATTERN RECOGN
  • [5] Region filling and object removal by exemplar-based image inpainting
    Criminisi, A
    Pérez, P
    Toyama, K
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2004, 13 (09) : 1200 - 1212
  • [6] Cyran K.A, 2013, EMERGING PARADIGMS M, P13
  • [7] Breast cancer statistics, 2019
    DeSantis, Carol E.
    Ma, Jiemin
    Gaudet, Mia M.
    Newman, Lisa A.
    Miller, Kimberly D.
    Sauer, Ann Goding
    Jemal, Ahmedin
    Siegel, Rebecca L.
    [J]. CA-A CANCER JOURNAL FOR CLINICIANS, 2019, 69 (06) : 438 - 451
  • [8] Cancer Treatment and Survivorship Statistics, 2014
    DeSantis, Carol E.
    Lin, Chun Chieh
    Mariotto, Angela B.
    Siegel, Rebecca L.
    Stein, Kevin D.
    Kramer, Joan L.
    Alteri, Rick
    Robbins, Anthony S.
    Jemal, Ahmedin
    [J]. CA-A CANCER JOURNAL FOR CLINICIANS, 2014, 64 (04) : 252 - 271
  • [9] Artificial neural network models to predict nodal status in clinically node-negative breast cancer
    Dihge, Looket
    Ohlsson, Mattias
    Eden, Patrik
    Bendahl, Par-Ola
    Ryden, Lisa
    [J]. BMC CANCER, 2019, 19 (1)
  • [10] Incidence of unilateral arm lymphoedema after breast cancer: a systematic review and meta-analysis
    DiSipio, Tracey
    Rye, Sheree
    Newman, Beth
    Hayes, Sandi
    [J]. LANCET ONCOLOGY, 2013, 14 (06) : 500 - 515