Synchronization in a ring of mutually coupled electromechanical devices

被引:6
作者
Yolong, V. Y. Taffoti
Woafo, P.
机构
[1] Abdus Salam Int Ctr Theoret Phys, I-34100 Trieste, Italy
[2] Fac Sci, Lab Mech, Yaounde, Cameroon
关键词
CHAOS SYNCHRONIZATION; STABILITY; OSCILLATIONS; DYNAMICS;
D O I
10.1088/0031-8949/74/5/019
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the synchronization in a ring of mutually coupled electromechanical devices. Each device consists of an electrical Duffing oscillator coupled magnetically with a linear mechanical oscillator. By varying the coupling coefficient, we find the ranges for cluster and complete synchronization, either in the regular state or in the chaotic one. Effects of this coupling parameter show various types of bifurcation sequences.
引用
收藏
页码:591 / 598
页数:8
相关论文
共 20 条
[1]  
AFRAIMOVICH VS, 1994, STABILITY STRUCTUR A, V6
[2]  
[Anonymous], 1967, Acoustical Engineering
[3]   Cluster synchronization modes in an ensemble of coupled chaotic oscillators [J].
Belykh, VN ;
Belykh, IV ;
Mosekilde, E .
PHYSICAL REVIEW E, 2001, 63 (03) :362161-362164
[4]   Shilnikov chaos and dynamics of a self-sustained electromechanical transducer [J].
Chedjou, JC ;
Woafo, P ;
Domngang, S .
JOURNAL OF VIBRATION AND ACOUSTICS-TRANSACTIONS OF THE ASME, 2001, 123 (02) :170-174
[5]  
DE SE, 2002, PHYSICA A, V303, P339
[6]   STABILITY OF SYNCHRONIZATION IN NETWORKS OF DIGITAL PHASE-LOCKED LOOPS [J].
GOLDSZTEIN, G ;
STROGATZ, SH .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1995, 5 (04) :983-990
[7]   Generalized correlated states in a ring of coupled nonlinear oscillators with a local injection [J].
Kouomou, YC ;
Woafo, P .
PHYSICAL REVIEW E, 2002, 66 (06) :6
[8]   Transitions from spatiotemporal chaos to cluster and complete synchronization states in a shift-invariant set of coupled nonlinear oscillators [J].
Kouomou, YC ;
Woafo, P .
PHYSICAL REVIEW E, 2003, 67 (04) :8
[9]   Stability and optimization of chaos synchronization through feedback coupling with delay [J].
Chembo Kouomou, Y. ;
Woafo, P. .
Physics Letters, Section A: General, Atomic and Solid State Physics, 2002, 298 (01) :18-28
[10]  
Mosekilde E., 1996, TOPICS NONLINEAR DYN, V1st ed.