Artificial intelligence in neuropathology: deep learning-based assessment of tauopathy

被引:74
作者
Signaevsky, Maxim [1 ,2 ,3 ]
Prastawa, Marcel [1 ,4 ]
Farrell, Kurt [1 ,2 ,3 ]
Tabish, Nabil [1 ,2 ,3 ]
Baldwin, Elena [1 ,2 ,3 ]
Han, Natalia [1 ,2 ,3 ]
Iida, Megan A. [1 ,2 ,3 ]
Koll, John [1 ,4 ]
Bryce, Clare [1 ,2 ,3 ]
Purohit, Dushyant [1 ,2 ,5 ]
Haroutunian, Vahram [2 ,5 ,6 ]
McKee, Ann C. [7 ,8 ,9 ,10 ,11 ]
Stein, Thor D. [8 ,9 ,10 ,11 ]
White, Charles L., III [12 ]
Walker, Jamie [12 ]
Richardson, Timothy E. [12 ]
Hanson, Russell [1 ,2 ,3 ]
Donovan, Michael J. [1 ,4 ]
Cordon-Cardo, Carlos [1 ,4 ]
Zeineh, Jack [1 ,4 ]
Fernandez, Gerardo [1 ,4 ]
Crary, John F. [1 ,2 ,3 ]
机构
[1] Icahn Sch Med Mt Sinai, Dept Pathol, New York, NY 10029 USA
[2] Icahn Sch Med Mt Sinai, Dept Neurosci, New York, NY 10029 USA
[3] Icahn Sch Med Mt Sinai, Ronald M Loeb Ctr Alzheimers Dis, New York, NY 10029 USA
[4] Icahn Sch Med Mt Sinai, Ctr Computat & Syst Pathol, New York, NY 10025 USA
[5] Icahn Sch Med Mt Sinai, Dept Psychiat, New York, NY 10029 USA
[6] J James Peters VA Med Ctr, Bronx, NY USA
[7] Boston Univ, Sch Med, Dept Neurol, Boston, MA 02118 USA
[8] Boston Univ, Sch Med, Dept Pathol, Boston, MA 02118 USA
[9] Boston Univ, Sch Med, Alzheimers Dis Ctr, CTE Program, Boston, MA 02118 USA
[10] James J Peters VA Boston Healthcare Syst, Mental Illness Res Educ & Clin Ctr, Boston, MA 02130 USA
[11] Dept Vet Affairs Med Ctr, Bedford, MA 01730 USA
[12] UT Southwestern Med Ctr, Dept Pathol, Neuropathol Lab, Dallas, TX 75390 USA
关键词
TAU PATHOLOGY;
D O I
10.1038/s41374-019-0202-4
中图分类号
R-3 [医学研究方法]; R3 [基础医学];
学科分类号
1001 ;
摘要
Accumulation of abnormal tau in neurofibrillary tangles (NFT) occurs in Alzheimer disease (AD) and a spectrum of tauopathies. These tauopathies have diverse and overlapping morphological phenotypes that obscure classification and quantitative assessments. Recently, powerful machine learning-based approaches have emerged, allowing the recognition and quantification of pathological changes from digital images. Here, we applied deep learning to the neuropathological assessment of NFT in postmortem human brain tissue to develop a classifier capable of recognizing and quantifying tau burden. The histopathological material was derived from 22 autopsy brains from patients with tauopathies. We used a custom web-based informatics platform integrated with an in-house information management system to manage whole slide images (WSI) and human expert annotations as ground truth. We utilized fully annotated regions to train a deep learning fully convolutional neural network (FCN) implemented in PyTorch against the human expert annotations. We found that the deep learning framework is capable of identifying and quantifying NFT with a range of staining intensities and diverse morphologies. With our FCN model, we achieved high precision and recall in naive WSI semantic segmentation, correctly identifying tangle objects using a SegNet model trained for 200 epochs. Our FCN is efficient and well suited for the practical application of WSIs with average processing times of 45 min per WSI per GPU, enabling reliable and reproducible large-scale detection of tangles. We measured performance on test data of 50 pre-annotated regions on eight naive WSI across various tauopathies, resulting in the recall, precision, and an F1 score of 0.92, 0.72, and 0.81, respectively. Machine learning is a useful tool for complex pathological assessment of AD and other tauopathies. Using deep learning classifiers, we have the potential to integrate cell-and region-specific annotations with clinical, genetic, and molecular data, providing unbiased data for clinicopathological correlations that will enhance our knowledge of the neurodegeneration.
引用
收藏
页码:1019 / 1029
页数:11
相关论文
共 29 条
[1]   Digital pathology: current status and future perspectives [J].
Al-Janabi, Shaimaa ;
Huisman, Andre ;
Van Diest, Paul J. .
HISTOPATHOLOGY, 2012, 61 (01) :1-9
[2]  
[Anonymous], 2018, ARXIV180804277
[3]   SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation [J].
Badrinarayanan, Vijay ;
Kendall, Alex ;
Cipolla, Roberto .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2017, 39 (12) :2481-2495
[4]  
Bennett DA, 2012, CURR ALZHEIMER RES, V9, P646
[5]   NEUROPATHOLOGICAL STAGING OF ALZHEIMER-RELATED CHANGES [J].
BRAAK, H ;
BRAAK, E .
ACTA NEUROPATHOLOGICA, 1991, 82 (04) :239-259
[6]   Dietary exposure to an environmental toxin triggers neurofibrillary tangles and amyloid deposits in the brain [J].
Cox, Paul Alan ;
Davis, David A. ;
Mash, Deborah C. ;
Metcalf, James S. ;
Banack, Sandra Anne .
PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, 2016, 283 (1823)
[7]   Primary age-related tauopathy (PART): a common pathology associated with human aging [J].
Crary, John F. ;
Trojanowski, John Q. ;
Schneider, Julie A. ;
Abisambra, Jose F. ;
Abner, Erin L. ;
Alafuzoff, Irina ;
Arnold, Steven E. ;
Attems, Johannes ;
Beach, Thomas G. ;
Bigio, Eileen H. ;
Cairns, Nigel J. ;
Dickson, Dennis W. ;
Gearing, Marla ;
Grinberg, Lea T. ;
Hof, Patrick R. ;
Hyman, Bradley T. ;
Jellinger, Kurt ;
Jicha, Gregory A. ;
Kovacs, Gabor G. ;
Knopman, David S. ;
Kofler, Julia ;
Kukull, Walter A. ;
Mackenzie, Ian R. ;
Masliah, Eliezer ;
McKee, Ann ;
Montine, Thomas J. ;
Murray, Melissa E. ;
Neltner, Janna H. ;
Santa-Maria, Ismael ;
Seeley, William W. ;
Serrano-Pozo, Alberto ;
Shelanski, Michael L. ;
Stein, Thor ;
Takao, Masaki ;
Thal, Dietmar R. ;
Toledo, Jonathan B. ;
Troncoso, Juan C. ;
Vonsattel, Jean Paul ;
White, Charles L., III ;
Wisniewski, Thomas ;
Woltjer, Randall L. ;
Yamada, Masahito ;
Nelson, Peter T. .
ACTA NEUROPATHOLOGICA, 2014, 128 (06) :755-766
[8]   Development and validation of a novel automated Gleason grade and molecular profile that define a highly predictive prostate cancer progression algorithm-based test [J].
Donovan, Michael J. ;
Fernandez, Gerardo ;
Scott, Richard ;
Khan, Faisal M. ;
Zeineh, Jack ;
Ko, Giovanni ;
Gladoun, Nataliya ;
Charytonowicz, Elizabeth ;
Tewari, Ash ;
Cordon-Cardo, Carlos .
PROSTATE CANCER AND PROSTATIC DISEASES, 2018, 21 (04) :594-603
[9]   Dermatologist-level classification of skin cancer with deep neural networks [J].
Esteva, Andre ;
Kuprel, Brett ;
Novoa, Roberto A. ;
Ko, Justin ;
Swetter, Susan M. ;
Blau, Helen M. ;
Thrun, Sebastian .
NATURE, 2017, 542 (7639) :115-+
[10]   Glial and Neuronal Tau Pathology in Tauopathies: Characterization of Disease-Specific Phenotypes and Tau Pathology Progression [J].
Ferrer, Isidre ;
Lopez-Gonzalez, Irene ;
Carmona, Margarita ;
Arregui, Laura ;
Dalfo, Esther ;
Torrejon-Escribano, Benjamin ;
Diehl, Roberta ;
Kovacs, Gabor G. .
JOURNAL OF NEUROPATHOLOGY AND EXPERIMENTAL NEUROLOGY, 2014, 73 (01) :81-97