Negative differential conductivity and carrier heating in gate-all-around Si nanowire FETs and its impact on CMOS logic circuits

被引:13
作者
Nayak, Kaushik [1 ]
Bajaj, Mohit [2 ]
Konar, Aniruddha [2 ]
Oldiges, Philip J. [3 ]
Iwai, Hiroshi [4 ]
Murali, K. V. R. M. [2 ]
Rao, V. Ramgopal [1 ]
机构
[1] Indian Inst Technol, Dept Elect Engn, Ctr Excellence Nanoelecton, Bombay 400076, Maharashtra, India
[2] IBM Semicond Res & Dev Ctr, Bangalore 500045, Karnataka, India
[3] IBM Semicond Res & Dev Ctr, Hopewell Jct, NY 12533 USA
[4] Tokyo Inst Technol, Frontier Res Ctr, Yokohama, Kanagawa 2268502, Japan
关键词
PHONON TRANSPORT; BAND-STRUCTURE; SILICON; ELECTRONS; PERFORMANCE; SIMULATION; HOT;
D O I
10.7567/JJAP.53.04EC16
中图分类号
O59 [应用物理学];
学科分类号
摘要
In this paper, we present a fully-coupled and self-consistent continuum based three-dimensional numerical analysis to understand hot carrier and device self-heating effects for device-circuit co-optimization in Si gate-all-around nanowire FETs. We employ three-moment based energy transport formulations and two-dimensional quantum confinement effects to demonstrate negative differential conductivity in Si nanowire FETs and assess its impact on a CMOS inverter and three-stage ring oscillator. We show that strong two-dimensional quantum confinement yields volume inversion conditions in Si nanowire FETs and surround gate geometry enables better short-channel effect control. We find that hot carrier and self-heating effects can degrade ON-state current in Si nanowire FETs and severely limit the logic circuit performance due to the introduction of higher signal propagation delays. (C) 2014 The Japan Society of Applied Physics
引用
收藏
页数:7
相关论文
共 40 条
[1]  
Auth C., 2012, 2012 IEEE Symposium on VLSI Technology, P131, DOI 10.1109/VLSIT.2012.6242496
[2]  
Bangsaruntip S, 2009, INT EL DEVICES MEET, P272
[3]  
BANK RE, 1983, IEEE T ELECTRON DEV, V30, P1031, DOI 10.1109/T-ED.1983.21257
[4]   Enhanced Performance of P-FET Omega-Gate SoI Nanowire With Recessed-SiGe Source-Drain Down to 13-nm Gate Length [J].
Barraud, Sylvain ;
Coquand, Remi ;
Hartmann, Jean-Michel ;
Maffini-Alvaro, Virginie ;
Samson, Marie-Pierre ;
Tosti, Lucie ;
Allain, Fabienne .
IEEE ELECTRON DEVICE LETTERS, 2013, 34 (09) :1103-1105
[5]   TRANSPORT EQUATIONS FOR ELECTRONS IN 2- VALLEY SEMICONDUCTORS [J].
BLOTEKJAER, K .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 1970, ED17 (01) :38-+
[6]   FINITE-ELEMENT ANALYSIS OF SEMICONDUCTOR-DEVICES - THE FIELDAY PROGRAM [J].
BUTURLA, EM ;
COTTRELL, PE ;
GROSSMAN, BM ;
SALSBURG, KA .
IBM JOURNAL OF RESEARCH AND DEVELOPMENT, 1981, 25 (04) :218-231
[7]  
Chen JD, 2010, PROCEEDINGS OF THE 2010 INTERNATIONAL CONFERENCE ON MECHANICAL, INDUSTRIAL, AND MANUFACTURING TECHNOLOGIES (MIMT 2010), P175, DOI 10.1115/1.859544.paper29
[8]  
Ferry D. K., 2009, TRANSPORT NANOSTRUCT, P98
[9]   Band-structure effects in ultrascaled silicon nanowires [J].
Gnani, Elena ;
Reggiani, Susanna ;
Gnudi, Antonio ;
Parruccini, Pietro ;
Colle, Renato ;
Rudan, Massimo ;
Baccarani, Giorgio .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2007, 54 (09) :2243-2254
[10]  
Grasser T., 2000, P 22 INT C MICR, P35