On soliton-type solutions of equations associated with N-component systems

被引:7
作者
Alber, MS [1 ]
Luther, GG
Miller, CA
机构
[1] Univ Notre Dame, Dept Math, Notre Dame, IN 46556 USA
[2] Northwestern Univ, Robert R McCormick Sch Engn & Appl Sci, Dept Engn Sci & Appl Math, Evanston, IL 60208 USA
基金
美国国家科学基金会;
关键词
D O I
10.1063/1.533133
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The algebraic geometric approach to N-component systems of nonlinear integrable PDE's is used to obtain and analyze explicit solutions of the coupled KdV and Dym equations. Detailed analysis of soliton fission, kink to anti-kink transitions and multi-peaked soliton solutions is carried out. Transformations are used to connect these solutions to several other equations that model physical phenomena in fluid dynamics and nonlinear optics. (C) 2000 American Institute of Physics. [S0022-2488(00)00501-6].
引用
收藏
页码:284 / 316
页数:33
相关论文
共 32 条
[1]  
Ablowitz MJ., 1981, SOLITONS INVERSE SCA, V4
[2]   ON THE LINK BETWEEN UMBILIC GEODESICS AND SOLITON-SOLUTIONS OF NONLINEAR PDES [J].
ALBER, MS ;
CAMASSA, R ;
HOLM, DD ;
MARSDEN, JE .
PROCEEDINGS OF THE ROYAL SOCIETY-MATHEMATICAL AND PHYSICAL SCIENCES, 1995, 450 (1940) :677-692
[3]   THE GEOMETRY OF PEAKED SOLITONS AND BILLIARD SOLUTIONS OF A CLASS OF INTEGRABLE PDES [J].
ALBER, MS ;
CAMASSA, R ;
HOLM, DD ;
MARSDEN, JE .
LETTERS IN MATHEMATICAL PHYSICS, 1994, 32 (02) :137-151
[4]   ON GEOMETRIC PHASES FOR SOLITON-EQUATIONS [J].
ALBER, MS ;
MARSDEN, JE .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1992, 149 (02) :217-240
[5]   Energy dependent Schrodinger operators and complex Hamiltonian systems on Riemann surfaces [J].
Alber, MS ;
Luther, GG ;
Marsden, JE .
NONLINEARITY, 1997, 10 (01) :223-241
[6]  
ALBER MS, 1999, ALGEBRAIC GEOMETRIC
[7]  
ALBER MS, 1999, GEOMETRY NEW CLASSES
[8]  
ALBER SI, 1985, CR ACAD SCI I-MATH, V301, P777
[9]  
ALONSO LM, 1992, PHYS LETT A, V167, P370, DOI 10.1016/0375-9601(92)90274-P
[10]   FACTORIZATION OF ENERGY-DEPENDENT SCHRODINGER-OPERATORS - MIURA MAPS AND MODIFIED SYSTEMS [J].
ANTONOWICZ, M ;
FORDY, AP .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1989, 124 (03) :465-486