On some higher order Hardy-Rellich type inequalities with boundary terms

被引:5
作者
Berchio, Elvise [1 ]
机构
[1] Politecn Milan, Dipartimento Matemat Politecn, I-20133 Milan, Italy
关键词
Hardy-Rellich inequalities; Remainder terms; Boundary eigenvalues; POSITIVITY; CONSTANTS;
D O I
10.1016/j.na.2008.12.037
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We determine boundary remainder terms for some higher order Hardy-Rellich inequalities involving the polyharmonic operator (-Delta)(m). The results are proved by studying suitable auxiliary boundary eigenvalue problems, the optimal constants found may not be the classical Hardy-Rellich ones. (c) 2008 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2834 / 2841
页数:8
相关论文
共 20 条
[1]   Optimal Hardy-Rellich inequalities, maximum principle and related eigenvalue problem [J].
Adimurthi ;
Grossi, Massimo ;
Santra, Sanjiban .
JOURNAL OF FUNCTIONAL ANALYSIS, 2006, 240 (01) :36-83
[2]   Hardy-Sobolev inequality in H1(Ω) and its applications [J].
Adimurthi .
COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2002, 4 (03) :409-434
[3]   ESTIMATES NEAR THE BOUNDARY FOR SOLUTIONS OF ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS SATISFYING GENERAL BOUNDARY CONDITIONS .1. [J].
AGMON, S ;
DOUGLIS, A ;
NIRENBERG, L .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1959, 12 (04) :623-727
[4]  
[Anonymous], 1997, Rev. Mat. Univ. Complut. Madrid
[5]   Improved Rellich inequalities for the polyharmonic operator [J].
Barbatis, G. .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2006, 55 (04) :1401-1422
[6]  
BERCHIO E, 2008, HARDYRELLICH INEQUAL
[7]   Positivity preserving property for a class of biharmonic elliptic problems [J].
Berchio, Elvise ;
Gazzola, Filippo ;
Mitidieri, Enzo .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2006, 229 (01) :1-23
[8]  
BUCUR D, CALCULUS VA IN PRESS
[9]   Weak eigenfunctions for the linearization of extremal elliptic problems [J].
Cabre, X ;
Martel, Y .
JOURNAL OF FUNCTIONAL ANALYSIS, 1998, 156 (01) :30-56
[10]  
Davies EB, 1998, MATH Z, V227, P511, DOI 10.1007/PL00004389