Harnack estimates for geometric flows, applications to Ricci flow coupled with harmonic map flow

被引:19
作者
Guo, Hongxin [1 ,2 ]
He, Tongtong [1 ]
机构
[1] Wenzhou Univ, Sch Math & Informat Sci, Wenzhou 325035, Zhejiang, Peoples R China
[2] Math Res Unit, L-1359 Luxembourg, Luxembourg
关键词
Ricci flow; Conjugate heat equation; Harnack estimate; HEAT-EQUATION;
D O I
10.1007/s10711-013-9864-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We derive Harnack estimates for heat and conjugate heat equations in abstract geometric flows. The main results lead to new Harnack inequalities for a variety of geometric flows. In particular, Harnack inequalities for the Ricci flow coupled with Harmonic map flow are obtained.
引用
收藏
页码:411 / 418
页数:8
相关论文
共 11 条
[1]  
[Anonymous], 2006, Grad. Stud. Math
[2]   Differential Harnack estimates for backward heat equations with potentials under the Ricci flow [J].
Cao, Xiaodong .
JOURNAL OF FUNCTIONAL ANALYSIS, 2008, 255 (04) :1024-1038
[3]   DIFFERENTIAL HARNACK ESTIMATES FOR TIME-DEPENDENT HEAT EQUATIONS WITH POTENTIALS [J].
Cao, Xiaodong ;
Hamilton, Richard S. .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 2009, 19 (04) :989-1000
[4]   Differential Harnack inequalities for heat equations with potentials under the Bernhard List's flow [J].
Fang, Shouwen .
GEOMETRIAE DEDICATA, 2012, 161 (01) :11-22
[5]  
Guo H., PACIFIC J M IN PRESS
[6]  
HAMILTON RS, 1993, J DIFFER GEOM, V37, P225
[7]   A gradient estimate for all positive solutions of the conjugate heat equation under Ricci flow [J].
Kuang, Shilong ;
Zhang, Qi S. .
JOURNAL OF FUNCTIONAL ANALYSIS, 2008, 255 (04) :1008-1023
[8]  
List B, 2008, COMMUN ANAL GEOM, V16, P1007
[9]  
Müller R, 2012, ANN SCI ECOLE NORM S, V45, P101
[10]   Monotone volume formulas for geometric flows [J].
Mueller, Reto .
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2010, 643 :39-57