Human-in-the-loop AI: Requirements on future (unified) air traffic management systems

被引:5
作者
Lundberg, Jonas [1 ]
Bang, Magnus [2 ]
Johansson, Jimmy [1 ]
Cheaitou, Ali [3 ]
Josefsson, Billy [4 ]
Tahboub, Zain [5 ]
机构
[1] Linkoping Univ, Dept Sci & Technol, Norrkoping, Sweden
[2] Linkoping Univ, Dept Comp & Informat Sci, Norrkoping, Sweden
[3] Univ Sharjah, Ind Engn & Engn Manafement Dept, Sharjah, U Arab Emirates
[4] LFV Air Nav Serv Sweden, Norrkoping, Sweden
[5] Dubai Aviat Engn Projects, Dubai, U Arab Emirates
来源
2019 IEEE/AIAA 38TH DIGITAL AVIONICS SYSTEMS CONFERENCE (DASC) | 2019年
关键词
Unified Traffic Management; Urban Traffic Management; UTM; Deep Learning; Optimization; Traffic management; Airspace design; Airspace management; Human-automation collaboration; HMI; Interface design; Cognitive Work Analysis; UNMANNED AERIAL VEHICLE;
D O I
10.1109/dasc43569.2019.9081674
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
Intense drone traffic, exceeding human capabilities of manual control, is expected to occur during the last stage of Unified Traffic Management (UTM) and Unmanned Airspace System (UAS) service deployment in cities. In this paper, we discuss how humans and automation could collaborate to manage this airspace. We review theory on options for UTM airspace structure (volumes, points, networks, layers), machine learning, optimization, and human-automation collaboration. Based on simulation and visualization of two cities, we discuss four abilities: to discern traffic patterns, to recognize situations, to predict situational developments, and to function in varying conditions of rule-following habits of airspace users. We then discuss the challenge of collaborating though the use of advanced visual dashboards, for human-in-the loop AI but also for society-in-the-loop. Finally, we discuss how the challenge of humanautomation collaboration can be expected to shift, as the capabilities of the machine increases.
引用
收藏
页数:9
相关论文
共 31 条
[1]   IRONIES OF AUTOMATION [J].
BAINBRIDGE, L .
AUTOMATICA, 1983, 19 (06) :775-779
[2]  
Bosson C., 2018, ARCEDAATN51240 NASA
[3]   The Seven Deadly Myths of "Autonomous Systems" [J].
Bradshaw, Jeffrey M. ;
Hoffman, Robert R. ;
Johnson, Matthew ;
Woods, David D. .
IEEE INTELLIGENT SYSTEMS, 2013, 28 (03) :54-61
[4]  
Bulusu V., 2017, NOIS CONTR IMPR QUAL
[5]  
Bulusu V., 2017, 17 AIAA AV TECHN INT
[6]   A multi-objective green UAV routing problem [J].
Coelho, Bruno N. ;
Coelho, Vitor N. ;
Coelho, Igor M. ;
Ochi, Luiz S. ;
Haghnazar, Roozbeh K. ;
Zuidema, Demetrius ;
Lima, Milton S. F. ;
da Costa, Adilson R. .
COMPUTERS & OPERATIONS RESEARCH, 2017, 88 :306-315
[7]   The unmanned aerial vehicle routing and trajectory optimisation problem, a taxonomic review [J].
Coutinho, Walton Pereira ;
Battarra, Maria ;
Fliege, Jorg .
COMPUTERS & INDUSTRIAL ENGINEERING, 2018, 120 :116-128
[8]   MABA-MABA or Abracadabra? Progress on Human–Automation Co-ordination [J].
S. W. A. Dekker ;
D. D. Woods .
Cognition, Technology & Work, 2002, 4 (4) :240-244
[9]   Advanced oxidation protein products sensitized the transient receptor potential vanilloid 1 via NADPH oxidase 1 and 4 to cause mechanical hyperalgesia [J].
Ding, Ruoting ;
Jiang, Hui ;
Sun, Baihui ;
Wu, Xiaoliang ;
Li, Wei ;
Zhu, Siyuan ;
Liao, Congrui ;
Zhong, Zhaoming ;
Chen, Jianting .
REDOX BIOLOGY, 2016, 10 :1-11
[10]   Vehicle Routing Problems for Drone Delivery [J].
Dorling, Kevin ;
Heinrichs, Jordan ;
Messier, Geoffrey G. ;
Magierowski, Sebastian .
IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2017, 47 (01) :70-85