Fourier-Dunkl system of the second kind and Euler-Dunkl polynomials

被引:11
作者
Duran, Antonio J. [1 ]
Perez, Mario [2 ]
Varona, Juan L. [3 ]
机构
[1] Univ Seville, Dept Anal Matemat, E-41080 Seville, Spain
[2] Univ Zaragoza, Dept Matemat, Zaragoza 50009, Spain
[3] Univ La Rioja, Dept Matemat & Comp, Logrono 26004, Spain
关键词
Euler-Dunkl polynomials; Fourier-Dunkl series; Dunkl transform; Sampling theorem; BERNOULLI-DUNKL;
D O I
10.1016/j.jat.2019.04.007
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove a partial fraction decomposition of a quotient of two functions E-alpha(itx) and I-alpha(it) which are defined in terms of the Bessel functions J(alpha) and J(alpha+1) of the first kind. This expansion leads naturally to the introduction of an orthonormal system with respect to the measure in vertical bar x vertical bar(2 alpha+1)dx/2(alpha+1)Gamma(alpha+1) in [-1, 1], which we call the Fourier-Dunkl system of the second kind. Euler-Dunkl polynomials epsilon(n,alpha)(x) of degree n are defined by considering E-alpha(tx)/I-alpha(t) as a generating function. It is shown that the sum Sigma(infinity)(m=1) 1/j(m,alpha)(2k), where jm,alpha are the positive zeros of J alpha, is equal (up to an explicit factor) to epsilon(2k-1), (alpha)(1). For alpha = 1/2 this leads to classical results of Euler since the function E-1/2(x) is the exponential function and epsilon(n,1/2)(x) are (essentially) the Euler polynomials. In the second part of the paper a sampling theorem of Whittaker-Shannon-Kotel' nikov type is established which is strongly related to the above-mentioned partial decomposition and which holds for all functions in the Payley-Wiener space defined by the Dunkl transform in [-1, 1]. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页码:23 / 39
页数:17
相关论文
共 11 条
[1]  
ANDERSEN NB, 2005, INT MATH RES NOT IMR, V30, P1817, DOI [DOI 10.1155/IMRN.2005.1817, 10.1155/IMRN.2005.1817]
[2]   A Whittaker-Shannon-Kotel'nikov sampling theorem related to the Dunkl transform [J].
Ciaurri, Oscar ;
Varona, Juan L. .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2007, 135 (09) :2939-2947
[3]   Bernoulli-Dunkl and Euler-Dunkl polynomials and their generalizations [J].
Ciaurri, Oscar ;
Minguez Ceniceros, Judit ;
Varona, Juan L. .
REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2019, 113 (03) :2853-2876
[4]   Bernoulli-Dunkl and Apostol-Euler-Dunkl polynomials with applications to series involving zeros of Bessel functions [J].
Ciaurri, Oscar ;
Duran, Antonio J. ;
Perez, Mario ;
Varona, Juan L. .
JOURNAL OF APPROXIMATION THEORY, 2018, 235 :20-45
[5]   Mean convergence of Fourier-Dunkl series [J].
Ciaurri, Oscar ;
Perez, Mario ;
Manuel Reyes, Juan ;
Luis Varona, Juan .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 372 (02) :470-485
[6]   THE DUNKL TRANSFORM [J].
DEJEU, MFE .
INVENTIONES MATHEMATICAE, 1993, 113 (01) :147-162
[7]  
Dilcher K., 2010, NIST Handbook of Mathematical Functions
[9]  
Rosenblum M., 1994, Non Selfadjoint Operators and Related Topics, P369, DOI [DOI 10.1007/978-3-0348-8522-5_15, 10.1007/978-3-0348-8522-515, DOI 10.1007/978-3-0348-8522-515]
[10]  
Szego G., 1954, Bull. Am. Math. Soc., V60, P405