WASSERSTEIN GRADIENT FLOW FORMULATION OF THE TIME-FRACTIONAL FOKKER-PLANCK EQUATION

被引:0
作者
Manh Hong Duong [1 ]
Jin, Bangti [2 ]
机构
[1] Univ Birmingham, Sch Math, Birmingham B15 2TT, W Midlands, England
[2] UCL, Dept Comp Sci, Gower St, London WC1E 6BT, England
关键词
Wasserstein gradient flow; time-fractional Fokker-Planck equation; convergence of time-discretization scheme; RANDOM-WALKS; CAPUTO DERIVATIVES; WEAK SOLUTIONS; DIFFUSION; APPROXIMATION; BEHAVIOR;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work, we investigate a variational formulation for a time-fractional Fokker-Planck equation which arises in the study of complex physical systems involving anomalously slow diffusion. The model involves a fractional-order Caputo derivative in time, and thus inherently nonlocal. The study follows the Wasserstein gradient flow approach pioneered by [R. Jordan, D. Kinderlehrer, and F. Otto, SIAM J. Math. Anal., 29(1):1-17, 1998]. We propose a JKO-type scheme for discretizing the model, using the L1 scheme for the Caputo fractional derivative in time, and establish the convergence of the scheme as the time step size tends to zero. Illustrative numerical results in one- and two-dimensional problems are also presented to show the approach.
引用
收藏
页码:1949 / 1975
页数:27
相关论文
共 42 条
[1]   FRACTIONAL DIFFUSION LIMIT FOR A FRACTIONAL VLASOV-FOKKER-PLANCK EQUATION [J].
Aceves-Sanchez, Pedro ;
Cesbron, Ludovic .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2019, 51 (01) :469-488
[2]   One-Dimensional Numerical Algorithms for Gradient Flows in the p-Wasserstein Spaces [J].
Agueh, Martial ;
Bowles, Malcolm .
ACTA APPLICANDAE MATHEMATICAE, 2013, 125 (01) :121-134
[3]   Fractional flows driven by subdifferentials in Hilbert spaces [J].
Akagi, Goro .
ISRAEL JOURNAL OF MATHEMATICS, 2019, 234 (02) :809-862
[4]  
Ambrosio L., 2008, LECT MATH, VSecond
[5]   GENERALIZED CONTINUOUS TIME RANDOM WALKS, MASTER EQUATIONS, AND FRACTIONAL FOKKER-PLANCK EQUATIONS [J].
Angstmann, C. N. ;
Donnelly, I. C. ;
Henry, B. I. ;
Langlands, T. A. M. ;
Straka, P. .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2015, 75 (04) :1445-1468
[6]   FOKKER-PLANCK AND KOLMOGOROV BACKWARD EQUATIONS FOR CONTINUOUS TIME RANDOM WALK SCALING LIMITS [J].
Baeumer, Boris ;
Straka, Peter .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2017, 145 (01) :399-412
[7]   From continuous time random walks to the fractional Fokker-Planck equation [J].
Barkai, E ;
Metzler, R ;
Klafter, J .
PHYSICAL REVIEW E, 2000, 61 (01) :132-138
[8]   Weak solutions to a fractional Fokker-Planck equation via splitting and Wasserstein gradient flow [J].
Bowles, Malcolm ;
Agueh, Martial .
APPLIED MATHEMATICS LETTERS, 2015, 42 :30-35
[10]  
Camilli F, 2019, ADV DIFFERENTIAL EQU, V24, P531