An exact framework for uncertainty quantification in Monte Carlo simulation

被引:3
作者
Saracco, P. [1 ]
Pia, M. G. [1 ]
机构
[1] Natl Inst Nucl Phys INFN, I-16146 Genoa, Italy
来源
20TH INTERNATIONAL CONFERENCE ON COMPUTING IN HIGH ENERGY AND NUCLEAR PHYSICS (CHEP2013), PARTS 1-6 | 2014年 / 513卷
关键词
POPULATION; SAMPLES;
D O I
10.1088/1742-6596/513/2/022033
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
In the context of Monte Carlo (MC) simulation of particle transport Uncertainty Quantification (UQ) addresses the issue of predicting non statistical errors affecting the physical results, i.e. errors deriving mainly from uncertainties in the physics data and/or in the model they embed. In the case of a single uncertainty a simple analytical relation exists among its the Probability Density Function (PDF) and the corresponding PDF for the output of the simulation: this allows a complete statistical analysis of the results of the simulation. We examine the extension of this result to the multi-variate case, when more than one of the physical input parameters are affected by uncertainties: a typical scenario is the prediction of the dependence of the simulation on input cross section tabulations.
引用
收藏
页数:7
相关论文
共 21 条
[1]  
[Anonymous], BOUNDING UNCERTAINTY
[2]  
[Anonymous], 1999, Extremes, DOI [10.1023/A:1009908026279, DOI 10.1023/A:1009908026279]
[3]   On the distribution of the sum of n non-identically distributed uniform random variables [J].
Bradley, DM ;
Gupta, RC .
ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2002, 54 (03) :689-700
[5]  
Helton JC, 2011, RELIAB ENG SYST SAFE, V96, P976, DOI 10.1016/j.ress.2011.03.017
[7]  
Levine RA, 1999, J CLIMATE, V12, P564, DOI 10.1175/1520-0442(1999)012<0564:SPFCCS>2.0.CO
[8]  
2
[9]  
Levy P, 1925, CALCUL PROBABILITES
[10]  
Lin G, 2012, 20914 PNNL