On Deciding Admissibility in Abstract Argumentation Frameworks

被引:0
作者
Nofal, Samer [1 ]
Atkinson, Katie [2 ]
Dunne, Paul E. [2 ]
机构
[1] German Jordanian Univ, Dept Comp Sci, Amman, Jordan
[2] Univ Liverpool, Dept Comp Sci, Liverpool, Merseyside, England
来源
KEOD: PROCEEDINGS OF THE 11TH INTERNATIONAL JOINT CONFERENCE ON KNOWLEDGE DISCOVERY, KNOWLEDGE ENGINEERING AND KNOWLEDGE MANAGEMENT - VOL 2: KEOD | 2019年
关键词
Argument-based Knowledge Base; Argument-based Reasoning; Computational Argumentation; Algorithms; DECISION-PROBLEMS; ALGORITHMS; SYSTEMS; INCONSISTENCY;
D O I
10.5220/0008064300670075
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In the context of abstract argumentation frameworks, the admissibility problem is about deciding whether a given argument (i.e. piece of knowledge) is admissible in a conflicting knowledge base. In this paper we present an enhanced backtracking-based algorithm for solving the admissibility problem. The algorithm performs successfully when applied to a wide range of benchmark abstract argumentation frameworks and when compared to the state-of-the-art algorithm.
引用
收藏
页码:67 / 75
页数:9
相关论文
共 50 条
  • [41] An Epistemic Interpretation of Abstract Dialectical Argumentation
    Heyninck, Jesse
    Kern-Isberner, Gabriele
    COMPUTATIONAL MODELS OF ARGUMENT (COMMA 2020), 2020, 326 : 227 - 238
  • [42] Extending Modular Semantics for Bipolar Weighted Argumentation (Extended Abstract)
    Potyka, Nico
    ADVANCES IN ARTIFICIAL INTELLIGENCE, KI 2019, 2019, 11793 : 273 - 276
  • [43] CoQuiAAS: A Constraint-based Quick Abstract Argumentation Solver
    Lagniez, Jean-Marie
    Lonca, Emmanuel
    Mailly, Jean-Guy
    2015 IEEE 27TH INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE (ICTAI 2015), 2015, : 928 - 935
  • [44] Incremental Computation in Dynamic Argumentation Frameworks
    Alfano, Gianvincenzo
    Greco, Sergio
    Parisi, Francesco
    IEEE INTELLIGENT SYSTEMS, 2021, 36 (06) : 80 - 86
  • [45] On the Input/Output behavior of argumentation frameworks
    Baroni, Pietro
    Boella, Guido
    Cerutti, Federico
    Giacomin, Massimiliano
    van der Torre, Leendert
    Villata, Serena
    ARTIFICIAL INTELLIGENCE, 2014, 217 : 144 - 197
  • [46] Reasoning with Metalevel Argumentation Frameworks in Aspartix
    Kokciyan, Nadin
    Sassoon, Isabel
    Young, Anthony P.
    Modgil, Sanjay
    Parsons, Simon
    COMPUTATIONAL MODELS OF ARGUMENT (COMMA 2018), 2018, 305 : 463 - 464
  • [47] Gradual handling of contradiction in argumentation frameworks
    Cayrol, C
    Lagasquie, MC
    INTELLIGENT SYSTEMS FOR INFORMATION PROCESSING: FROM REPRESENTATION TO APPLICATIONS, 2003, : 179 - 190
  • [48] Reduced meet over labelling-based semantics in abstract argumentation
    Tan, Lixing
    Zhu, Zhaohui
    Zhang, Jinjin
    INFORMATION PROCESSING LETTERS, 2025, 187
  • [49] Taking into account ?who said what? in abstract argumentation: Complexity results
    Fazzinga, Bettina
    Flesca, Sergio
    Furfaro, Filippo
    ARTIFICIAL INTELLIGENCE, 2023, 318
  • [50] Stochastic Local Search Algorithms for Abstract Argumentation Under Stable Semantics
    Thimm, Matthias
    COMPUTATIONAL MODELS OF ARGUMENT (COMMA 2018), 2018, 305 : 169 - 180