Deep Learning Enabled Design of Complex Transmission Matrices for Universal Optical Components

被引:56
作者
Dinsdale, Nicholas J. [1 ,2 ]
Wiecha, Peter R. [2 ,5 ]
Delaney, Matthew [1 ,2 ]
Reynolds, Jamie [3 ]
Ebert, Martin [3 ]
Zeimpekis, Ioannis [3 ]
Thomson, David J. [3 ]
Reed, Graham T. [3 ]
Lalanne, Philippe [4 ]
Vynck, Kevin [4 ]
Muskens, Otto L. [2 ]
机构
[1] Univ Southampton, Fac Engn & Phys Sci, Optoelect Res Ctr, Southampton SO17 1BJ, Hants, England
[2] Univ Southampton, Fac Engn & Phys Sci, Phys & Astron, Southampton SO17 1BJ, Hants, England
[3] Univ Southampton, Optoelect Res Ctr, Southampton SO17 1BJ, Hants, England
[4] Univ Bordeaux, Grad Sch, Inst Opt, LP2N,CNRS, F-33400 Talence, France
[5] Univ Toulouse, CNRS, LAAS, F-31031 Toulouse, France
基金
英国工程与自然科学研究理事会; 奥地利科学基金会;
关键词
silicon photonics; deep learning inverse design; light scattering; INVERSE-DESIGN; COMPACT; CHIP;
D O I
10.1021/acsphotonics.0c01481
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Recent breakthroughs in photonics-based quantum, neuromorphic, and analogue processing have pointed out the need for new schemes for fully programmable nanophotonic devices. Universal optical elements based on interferometer meshes are underpinning many of these new technologies, however, this is achieved at the cost of an overall footprint that is very large compared to the limited chip real estate, restricting the scalability of this approach. Here, we consider an ultracompact platform for low-loss programmable elements using the complex transmission matrix of a multiport multimode waveguide. We propose a deep learning inverse network approach to design arbitrary transmission matrices using patterns of weakly scattering perturbations. The demonstrated technique allows control over both the intensity and the phase in a multiport device at a four orders reduced device footprint compared to conventional technologies, thus, opening the door for large-scale integrated universal networks.
引用
收藏
页码:283 / 295
页数:13
相关论文
共 65 条
[1]   Numerical analysis of a slit-groove diffraction problem [J].
Besbes, M. ;
Hugonin, J. P. ;
Lalanne, P. ;
van Haver, S. ;
Janssen, O. T. A. ;
Nugrowati, A. M. ;
Xu, M. ;
Pereira, S. F. ;
Urbach, H. P. ;
van de Nes, A. S. ;
Bienstman, P. ;
Granet, G. ;
Moreau, A. ;
Helfert, S. ;
Sukharev, M. ;
Seideman, T. ;
Baida, F. I. ;
Guizal, B. ;
Van Labeke, D. .
JOURNAL OF THE EUROPEAN OPTICAL SOCIETY-RAPID PUBLICATIONS, 2007, 2
[2]  
Blanchard-Dionne A.-P., 2020, OSA CONTINUUM
[3]   Programmable Photonics: An Opportunity for an Accessible Large-Volume PIC Ecosystem [J].
Bogaerts, Wim ;
Rahim, Abdul .
IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2020, 26 (05)
[4]   Learning to see through multimode fibers [J].
Borhani, Navid ;
Kakkava, Eirini ;
Moser, Christophe ;
Psaltis, Demetri .
OPTICA, 2018, 5 (08) :960-966
[5]  
Bowman Samuel R., 2016, SIGNLL, P10
[6]   Shaping the branched flow of light through disordered media [J].
Brandstoetter, Andre ;
Girschik, Adrian ;
Ambichl, Philipp ;
Rotter, Stefan .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2019, 116 (27) :13260-13265
[7]   All-optical spatial light modulator for reconfigurable silicon photonic circuits [J].
Bruck, Roman ;
Vynck, Kevin ;
Lalanne, Philippe ;
Mills, Ben ;
Thomson, David J. ;
Mashanovich, Goran Z. ;
Reed, Graham T. ;
Muskens, Otto L. .
OPTICA, 2016, 3 (04) :396-402
[8]  
Bruck R, 2015, NAT PHOTONICS, V9, P54, DOI [10.1038/NPHOTON.2014.274, 10.1038/nphoton.2014.274]
[9]  
Burgess C. P., 2018, ARXIV 1804 03599 CS
[10]   Post-fabrication phase trimming of Mach-Zehnder interferometers by laser annealing of germanium implanted waveguides [J].
Chen, Xia ;
Milosevic, Milan M. ;
Thomson, David J. ;
Khokhar, Ali Z. ;
Franz, Yohann ;
Runge, Antoine F. J. ;
Mailis, Sakellaris ;
Peacock, Anna C. ;
Reed, Graham T. .
PHOTONICS RESEARCH, 2017, 5 (06) :578-582