Representations and module-extensions of 3-hom-Lie algebras

被引:14
作者
Liu, Yan [1 ]
Chen, Liangyun [1 ]
Ma, Yao [2 ]
机构
[1] NE Normal Univ, Sch Math & Stat, Changchun 130024, Peoples R China
[2] Univ Sci & Technol China, Sch Math Sci, Hefei 230026, Peoples R China
基金
中国国家自然科学基金;
关键词
3-hom-Lie algebra; Module-extension; T-theta-extension; T-theta*-extension; Representation;
D O I
10.1016/j.geomphys.2015.08.013
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the representations and module-extensions of 3-hom-Lie algebras. We show that a linear map between 3-hom-Lie algebras is a morphism if and only if its graph is a horn subalgebra and show that the set of derivations of a 3-hom-Lie algebra is a Lie algebra. Moreover, we introduce the definition of To-extensions and 4-extensions of 3-hom-Lie algebras in terms of modules, providing the necessary and sufficient conditions for a 2k-dimensional metric 3-hom-Lie algebra to be isometric to a 4-extension. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:376 / 383
页数:8
相关论文
共 13 条
[1]   Representations and cohomology of n-ary multiplicative Hom-Nambu-Lie algebras [J].
Ammar, F. ;
Mabrouk, S. ;
Makhlouf, A. .
JOURNAL OF GEOMETRY AND PHYSICS, 2011, 61 (10) :1898-1913
[2]  
Ammar F., 2011, ARXIV11102078
[3]   Generalization of n-ary Nambu algebras and beyond [J].
Ataguema, H. ;
Makhlouf, A. ;
Silvestrov, S. .
JOURNAL OF MATHEMATICAL PHYSICS, 2009, 50 (08)
[4]   Gauge symmetry and supersymmetry of multiple M2-branes [J].
Bagger, Jonathan ;
Lambert, Neil .
PHYSICAL REVIEW D, 2008, 77 (06)
[5]   Comments on multiple M2-branes [J].
Bagger, Jonathan ;
Lambert, Neil .
JOURNAL OF HIGH ENERGY PHYSICS, 2008, (02)
[6]   Module extensions of 3-Lie algebras [J].
Bai, Ruipu ;
Wu, Wanqing ;
Li, Ying ;
Li, Zhenheng .
LINEAR & MULTILINEAR ALGEBRA, 2012, 60 (04) :433-447
[7]  
Bordemann M., 1997, Acta Math. Univ. Com. LXVI, V2, P151
[8]   Algebraic structures on parallel M2 branes [J].
Gustavsson, Andreas .
NUCLEAR PHYSICS B, 2009, 811 (1-2) :66-76
[9]   Deformations of Lie algebras using σ-derivations [J].
Hartwig, JT ;
Larsson, D ;
Silvestrov, SD .
JOURNAL OF ALGEBRA, 2006, 295 (02) :314-361
[10]  
Hu NH, 1999, ALGEBR COLLOQ, V6, P51