Theoretical and experimental investigation of an efficient pulsed barium tungstate Raman amplifier at 1180 nm

被引:8
|
作者
Wang, Cong [1 ,2 ]
Cong, Zhenhua [1 ,2 ]
Liu, Zhaojun [1 ,2 ]
Zhang, Xingyu [1 ,2 ]
Wang, Qingpu [1 ,2 ]
Wei, Wei [1 ,2 ]
Li, Lei [1 ,2 ]
Zhang, Yuangeng [1 ,2 ]
Wang, Weitao [1 ,2 ]
Wu, Zhenguo [1 ,2 ]
Chen, Xiaohan [1 ,2 ]
Li, Ping [1 ,2 ]
Zhang, Huaijin [3 ]
机构
[1] Shandong Univ, Sch Informat Sci & Engn, Jinan 250100, Shandong, Peoples R China
[2] Shandong Univ, Shandong Prov Key Lab Laser Technol & Applicat, Jinan 250100, Shandong, Peoples R China
[3] Shandong Univ, State Key Lab Crystal Mat, Jinan 250100, Shandong, Peoples R China
基金
高等学校博士学科点专项科研基金; 中国国家自然科学基金;
关键词
Pulsed Raman amplifier; BaWO4; crystal; Coupled radiation transfer equations; Stimulated Raman scattering; PICOSECOND PULSES; NITRATE CRYSTAL; CONTINUOUS-WAVE; BAWO4; CRYSTAL; SCATTERING; LASER; OPTIMIZATION; INTRACAVITY; CONVERSION;
D O I
10.1016/j.optcom.2013.09.068
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
An efficient pulsed Raman amplifier at 1180 nm is studied by taking advantage of the barium tungstate (BaWO4) crystal. The Raman amplification ratios, the amplified Raman laser energies, and the Raman conversion efficiencies are investigated theoretically and experimentally. In the case of 200 mJ pumping pulse energy at 1064 nm and 8.0 mJ Raman signal energy, the highest amplified Raman energy obtained is 71.5 mJ and serious depletion of the pumping laser pulse is detected. The coupled radiation transfer equations are used to predict the performance of Raman amplifier. The theoretical results are in agreement with the experimental ones on the whole. 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:80 / 84
页数:5
相关论文
共 19 条
  • [1] High-average-power operation of a pulsed Raman fiber amplifier at 1686 nm
    Yao, Weichao
    Chen, Bihui
    Zhang, Jianing
    Zhao, Yongguang
    Chen, Hao
    Shen, Deyuan
    OPTICS EXPRESS, 2015, 23 (09): : 11007 - 11012
  • [2] Theoretical and experimental investigation of pulsed laser cutting
    Kaebernick, H
    Bicleanu, D
    Brandt, M
    CIRP ANNALS 1999 - MANUFACTURING TECHNOLOGY, 1999, : 163 - 166
  • [3] Pulsed Single-Mode Yb-Doped Fibre Amplifier around 976 nm: Numerical Modelling and Experimental Study
    Bouchier, Aude
    Myara, Mikhael
    Lucas-Leclin, Gaelle
    Georges, Patrick
    FIBER LASERS VII: TECHNOLOGY, SYSTEMS, AND APPLICATIONS, 2010, 7580
  • [4] Theoretical and numerical study on narrow-linewidth nanosecond pulsed Raman fiber amplifier
    Su Rong-Tao
    Zhang Peng-Fei
    Zhou Pu
    Xiao Hu
    Wang Xiao-Lin
    Duan Lei
    Lu Pin
    Xu Xiao-Jun
    ACTA PHYSICA SINICA, 2018, 67 (15)
  • [5] Nanosecond pulsed 620 nm source by frequency-doubling a phosphosilicate Raman fiber amplifier
    Chandran, A. M.
    Runcorn, T. H.
    Murray, R. T.
    Taylor, J. R.
    OPTICS LETTERS, 2019, 44 (24) : 6025 - 6028
  • [6] Theoretical analysis of single-frequency Raman fiber amplifier system operating at 1178nm
    Vergien, Christopher
    Dajani, Iyad
    Zeringue, Clint
    OPTICS EXPRESS, 2010, 18 (25): : 26214 - 26228
  • [7] Investigation of an Ultra Large Mode Area Power Amplifier Stage for a Pulsed 1550 nm Laser System
    Klopfer, Michael
    Henry, Leanne J.
    Jain, Ravinder
    LASER RESONATORS, MICRORESONATORS, AND BEAM CONTROL XX, 2018, 10518
  • [8] Experimental and Numerical Investigation of Single Frequency Amplifier with Photonic Bandgap Fiber at 1178 nm
    Wang Jian-Hua
    Cui Shu-Zhen
    Hu Jin-Meng
    Cao Fen
    Fang Yong
    Lu Hui-Ling
    CHINESE PHYSICS LETTERS, 2014, 31 (06)
  • [9] Highly efficient nanosecond 560 nm source by SHG of a combined Yb-Raman fiber amplifier
    Runcorn, T. H.
    Murray, R. T.
    Taylor, J. R.
    OPTICS EXPRESS, 2018, 26 (04): : 4440 - 4447
  • [10] Experimental and theoretical investigations of single-frequency Raman fiber amplifiers operating at 1178 nm
    Dajani, Iyad
    Vergien, Christopher
    Ward, Benjamin
    Robin, Craig
    Naderi, Shadi
    Flores, Angel
    Diels, Jean-Claude
    NONLINEAR FREQUENCY GENERATION AND CONVERSION: MATERIALS, DEVICES, AND APPLICATIONS XII, 2013, 8604